期刊论文详细信息
Journal of Cheminformatics
MDSuite: comprehensive post-processing tool for particle simulations
Software
Francisco Torres-Herrador1  Samuel Tovey2  Marco Brückner2  Christoph Lohrmann2  Christian Holm2  Fabian Zills2 
[1] Aeronautics and Aerospace Department, von Karman Institute for Fluid Dynamics, Rhode-St-Genese, Belgium;Thermo and Fluid Dynamics (FLOW), Vrije Universiteit Brussel, Brussels, Belgium;Laboratory for Chemical Technology (LCT), Ghent University, Ghent, Belgium;Institute for Computational Physics, Universität Stuttgart, Stuttgart, Germany;
关键词: Molecular dynamics;    Computational physics;    Material properties;    High performance computing;    TensorFlow;    FAIR data;   
DOI  :  10.1186/s13321-023-00687-y
 received in 2022-03-10, accepted in 2023-01-22,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Particle-Based (PB) simulations, including Molecular Dynamics (MD), provide access to system observables that are not easily available experimentally. However, in most cases, PB data needs to be processed after a simulation to extract these observables. One of the main challenges in post-processing PB simulations is managing the large amounts of data typically generated without incurring memory or computational capacity limitations. In this work, we introduce the post-processing tool: MDSuite. This software, developed in Python, combines state-of-the-art computing technologies such as TensorFlow, with modern data management tools such as HDF5 and SQL for a fast, scalable, and accurate PB data processing engine. This package, built around the principles of FAIR data, provides a memory safe, parallelized, and GPU accelerated environment for the analysis of particle simulations. The software currently offers 17 calculators for the computation of properties including diffusion coefficients, thermal conductivity, viscosity, radial distribution functions, coordination numbers, and more. Further, the object-oriented framework allows for the rapid implementation of new calculators or file-readers for different simulation software. The Python front-end provides a familiar interface for many users in the scientific community and a mild learning curve for the inexperienced. Future developments will include the introduction of more analysis associated with ab-initio methods, colloidal/macroscopic particle methods, and extension to experimental data.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202305158231390ZK.pdf 2424KB PDF download
40517_2023_248_Article_IEq20.gif 1KB Image download
40517_2023_248_Article_IEq28.gif 1KB Image download
40517_2023_248_Article_IEq34.gif 1KB Image download
MediaObjects/41408_2023_791_MOESM5_ESM.pptx 156KB Other download
40854_2022_419_Article_IEq5.gif 1KB Image download
40854_2023_456_Article_IEq31.gif 1KB Image download
Fig. 4 3102KB Image download
Fig. 5 1942KB Image download
MediaObjects/12864_2023_9176_MOESM6_ESM.xlsx 11KB Other download
Fig. 6 2019KB Image download
Fig. 4 1982KB Image download
Fig. 7 21KB Image download
Fig. 8 28KB Image download
Fig. 5 2103KB Image download
MediaObjects/42004_2023_833_MOESM3_ESM.docx 240017KB Other download
MediaObjects/41408_2023_791_MOESM7_ESM.docx 29KB Other download
40708_2023_184_Article_IEq4.gif 1KB Image download
Fig. 5 1599KB Image download
Fig. 10 114KB Image download
Fig. 1 710KB Image download
Fig. 1 1163KB Image download
Fig. 7 4459KB Image download
MediaObjects/13046_2020_1606_MOESM1_ESM.doc 39KB Other download
Fig. 7 2398KB Image download
Fig. 3 1346KB Image download
Fig. 2 1234KB Image download
Fig. 1 154KB Image download
Fig. 6 2517KB Image download
Fig. 1 832KB Image download
Fig. 5 1847KB Image download
40708_2023_184_Article_IEq16.gif 1KB Image download
Fig. 2 781KB Image download
MediaObjects/13395_2023_313_MOESM1_ESM.pdf 43KB PDF download
Fig. 3 1944KB Image download
Fig. 2 740KB Image download
12302_2023_718_Article_IEq4.gif 1KB Image download
Fig. 3 74KB Image download
Fig. 2 718KB Image download
MediaObjects/13750_2019_162_MOESM1_ESM.docx 32KB Other download
Fig. 5 68KB Image download
Fig. 8 2349KB Image download
Fig. 1 424KB Image download
MediaObjects/12944_2023_1787_MOESM2_ESM.docx 4153KB Other download
MediaObjects/12951_2023_1799_MOESM1_ESM.docx 2710KB Other download
Fig. 1 236KB Image download
Fig. 1 156KB Image download
Fig. 4 595KB Image download
Fig. 2 480KB Image download
Fig. 6 273KB Image download
Fig. 2 1652KB Image download
Fig. 2 254KB Image download
Fig. 8 4411KB Image download
Fig. 5 2138KB Image download
Fig. 3 1688KB Image download
Fig. 6 67KB Image download
12302_2023_718_Article_IEq20.gif 1KB Image download
40798_2023_559_Article_IEq1.gif 2KB Image download
MediaObjects/40798_2023_559_MOESM1_ESM.pdf 135KB PDF download
MediaObjects/12951_2023_1820_MOESM1_ESM.docx 2873KB Other download
Fig. 6 635KB Image download
【 图 表 】

Fig. 6

40798_2023_559_Article_IEq1.gif

12302_2023_718_Article_IEq20.gif

Fig. 6

Fig. 3

Fig. 5

Fig. 8

Fig. 2

Fig. 2

Fig. 6

Fig. 2

Fig. 4

Fig. 1

Fig. 1

Fig. 1

Fig. 8

Fig. 5

Fig. 2

Fig. 3

12302_2023_718_Article_IEq4.gif

Fig. 2

Fig. 3

Fig. 2

40708_2023_184_Article_IEq16.gif

Fig. 5

Fig. 1

Fig. 6

Fig. 1

Fig. 2

Fig. 3

Fig. 7

Fig. 7

Fig. 1

Fig. 1

Fig. 10

Fig. 5

40708_2023_184_Article_IEq4.gif

Fig. 5

Fig. 8

Fig. 7

Fig. 4

Fig. 6

Fig. 5

Fig. 4

40854_2023_456_Article_IEq31.gif

40854_2022_419_Article_IEq5.gif

40517_2023_248_Article_IEq34.gif

40517_2023_248_Article_IEq28.gif

40517_2023_248_Article_IEq20.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  文献评价指标  
  下载次数:13次 浏览次数:6次