期刊论文详细信息
Clinical Proteomics
Addressing the needs of traumatic brain injury with clinical proteomics
Joseph A Loo1  Ina-Beate Wanner2  Rachel R Ogorzalek Loo1  Sean Shen3 
[1]Molecular Biology Institute, University of California-Los Angeles, Los Angeles, CA 90095, USA
[2]Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, University of California-Los Angeles, Los Angeles, CA 90095, USA
[3]Department of Chemistry and Biochemistry, University of California-Los Angeles, Los Angeles, CA 90095, USA
关键词: Multiple reaction monitoring;    Mass spectrometry;    Clinical proteomics;    Biomarker;    Traumatic brain injury;   
Others  :  802840
DOI  :  10.1186/1559-0275-11-11
 received in 2013-04-15, accepted in 2014-02-10,  发布年份 2014
PDF
【 摘 要 】

Background

Neurotrauma or injuries to the central nervous system (CNS) are a serious public health problem worldwide. Approximately 75% of all traumatic brain injuries (TBIs) are concussions or other mild TBI (mTBI) forms. Evaluation of concussion injury today is limited to an assessment of behavioral symptoms, often with delay and subject to motivation. Hence, there is an urgent need for an accurate chemical measure in biofluids to serve as a diagnostic tool for invisible brain wounds, to monitor severe patient trajectories, and to predict survival chances. Although a number of neurotrauma marker candidates have been reported, the broad spectrum of TBI limits the significance of small cohort studies. Specificity and sensitivity issues compound the development of a conclusive diagnostic assay, especially for concussion patients. Thus, the neurotrauma field currently has no diagnostic biofluid test in clinical use.

Content

We discuss the challenges of discovering new and validating identified neurotrauma marker candidates using proteomics-based strategies, including targeting, selection strategies and the application of mass spectrometry (MS) technologies and their potential impact to the neurotrauma field.

Summary

Many studies use TBI marker candidates based on literature reports, yet progress in genomics and proteomics have started to provide neurotrauma protein profiles. Choosing meaningful marker candidates from such ‘long lists’ is still pending, as only few can be taken through the process of preclinical verification and large scale translational validation. Quantitative mass spectrometry targeting specific molecules rather than random sampling of the whole proteome, e.g., multiple reaction monitoring (MRM), offers an efficient and effective means to multiplex the measurement of several candidates in patient samples, thereby omitting the need for antibodies prior to clinical assay design. Sample preparation challenges specific to TBI are addressed. A tailored selection strategy combined with a multiplex screening approach is helping to arrive at diagnostically suitable candidates for clinical assay development. A surrogate marker test will be instrumental for critical decisions of TBI patient care and protection of concussion victims from repeated exposures that could result in lasting neurological deficits.

【 授权许可】

   
2014 Shen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708031907918.pdf 417KB PDF download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

【 参考文献 】
  • [1]Alam SL, Atkins JF, Gesteland RF: Programmed ribosomal frameshifting: much ado about knotting! Proc Natl Acad Sci U S A 1999, 96:14177-14179.
  • [2]Poste G: Bring on the biomarkers. Nature 2011, 469:156-157.
  • [3]Anderson L: Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol 2005, 563:23-60.
  • [4]Spaethling JM, Geddes-Klein DM, Miller WJ, von Reyn CR, Singh P, Mesfin M, Bernstein SJ, Meaney DF: Linking impact to cellular and molecular sequelae of CNS injury: modeling in vivo complexity with in vitro simplicity. Prog Brain Res 2007, 161:27-39.
  • [5]Kazanis I: CNS injury research; reviewing the last decade: methodological errors and a proposal for a new strategy. Brain Res Brain Res Rev 2005, 50:377-386.
  • [6]Klose J: Protein mapping by combined isoelectric focusing and electrophoresis of mouse tissues. Humangenetik 1975, 26:231-243.
  • [7]O'Farrell PH: High resolution two-dimensional electrophoresis of proteins. J Biol Chem 1975, 250:4007-4021.
  • [8]Nielsen ML, Bennett KL, Larsen B, Moniatte M, Mann M: Peptide end sequencing by orthogonal MALDI tandem mass spectrometry. J Proteome Res 2002, 1:63-71.
  • [9]Washburn MP, Wolters D, Yates JR: Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nature Biotechnol 2001, 19:242-247.
  • [10]Wolters DA, Washburn MP, Yates JR III: An automated multidimensional protein identification technology for shotgun proteomics. Anal Chem 2001, 73:5683-5690.
  • [11]Matt P, Fu Z, Fu Q, Van Eyk JE: Biomarker discovery: proteome fractionation and separation in biological samples. Physiol Genomics 2007, 33:12-17.
  • [12]Parker CE, Pearson TW, Anderson NL, Borchers CH: Mass-spectrometry-based clinical proteomics – a review and prospective. Analyst 1830, 2010:135.
  • [13]Siman R, McIntosh TK, Soltesz KM, Chen Z, Neumar RW, Roberts VL: Proteins released from degenerating neurons are surrogate markers for acute brain damage. Neurobiol Dis 2004, 16:311-320.
  • [14]Siman R, Toraskar N, Dang A, McNeil E, McGarvey M, Plaum J, Maloney E, Grady MS: A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J Neurotrauma 2009, 26:1867-1877.
  • [15]Rifai N, Gillette MA, Carr SA: Protein biomarker discovery and validation: the long and uncertain path to clinical utility. Nat Biotechnol 2006, 24:971-983.
  • [16]Shapiro SS, Wilk MB: An analysis of variance test for normality (complete samples). Biometrika 1965, 52:591-611.
  • [17]Borchers CH, Parker CE: Improving the biomarker pipeline. Clin Chem 2010, 56:1786-1788.
  • [18]Faul M, Xu L, Wald MM, Coronado VG: Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006. Atlanta, GA: Centers for Disease Control and Prevention, National Center for Injury Prevention and Control; 2010. http://www.cdc.gov/traumaticbraininjury/pdf/blue_book.pdf webcite
  • [19]National Institute of Neurological Disorders and Stroke: Traumatic Brain Injury: Hope Through Research 2002. http://www.ninds.nih.gov/disorders/tbi/tbi_htr.pdf webcite
  • [20]Risdall JE, Menon DK: Traumatic brain injury. Phil Trans Royal Soc London, Series B, Biol Sci 2011, 366:241-250.
  • [21]Gordon WA, Brown M, Sliwinski M, Hibbard MR, Patti N, Weiss MJ, Kalinsky R, Sheerer M: The enigma of "hidden" traumatic brain injury. J Head Trauma Rehabil 1998, 13:39-56.
  • [22]North SH, Shriver-Lake LC, Taitt CR, Ligler FS: Rapid Analytical Methods for On-Site Triage for Traumatic Brain Injury. Ann Rev Anal Chem 2012, 5:35-56.
  • [23]Squier W: The "Shaken Baby" syndrome: pathology and mechanisms. Acta Neuropathol 2011, 122:519-542.
  • [24]Geddes JF, Tasker RC, Hackshaw AK, Nickols CD, Adams GGW, Whitwell HL, Scheimberg I: Dural haemorrhage in non-traumatic infant deaths: does it explain the bleeding in 'shaken baby syndrome'? Neuropath Appl Neuro 2003, 29:14-22.
  • [25]Laposata ME, Laposata M: Children with signs of abuse: when is it not child abuse? Am J Clin Pathol 2005, 123(Suppl):S119-S124.
  • [26]Yokobori S, Hosein K, Burks S, Sharma I, Gajavelli S, Bullock R: Biomarkers for the clinical differential diagnosis in traumatic brain injury–a systematic review. CNS Neurosci Ther 2013, 19:556-565.
  • [27]Bettermann K, Slocomb JE: Clinical Relevance of Biomarkers for Traumatic Brain Injury. In Biomarkers for Traumatic Brain Injury. Edited by Thurston D. Cambridge: Royal Society of Chemistry; 2012:1-18.
  • [28]Cobb S, Battin B: Second-impact syndrome. J Sch Nurs 2004, 20:262-267.
  • [29]Baugh CM, Stamm JM, Riley DO, Gavett BE, Shenton ME, Lin A, Nowinski CJ, Cantu RC, McKee AC, Stern RA: Chronic traumatic encephalopathy: neurodegeneration following repetitive concussive and subconcussive brain trauma. Brain Imaging Behav 2012, 6:244-254.
  • [30]Stein TD, Alvarez VE, McKee AC: Chronic traumatic encephalopathy: a spectrum of neuropathological changes following repetitive brain trauma in athletes and military personnel. Alzheimers Res Ther 2014, 6:4. BioMed Central Full Text
  • [31]Kennedy JE, Leal FO, Lewis JD, Cullen MA, Amador RR: Posttraumatic stress symptoms in OIF/OEF service members with blast-related and non-blast-related mild TBI. Neurorehabil 2010, 26:223-231.
  • [32]Cifu DX, Taylor BC, Carne WF, Bidelspach D, Sayer NA, Scholten J, Campbell EH: Traumatic brain injury, posttraumatic stress disorder, and pain diagnoses in OIF/OEF/OND Veterans. J Rehabil Res Dev 2014, 50:1169-1176.
  • [33]Zhou Y, Kierans A, Kenul D, Ge Y, Rath J, Reaume J, Grossman RI, Lui YW: Mild traumatic brain injury: longitudinal regional brain volume changes. Radiology 2013, 267:880-890.
  • [34]Small GW, Kepe V, Siddarth P, Ercoli LM, Merrill DA, Donoghue N, Bookheimer SY, Martinez J, Omalu B, Bailes J, Carrio J: PET scanning of brain tau in retired national football league players: preliminary findings. Am J Geriat Psych 2013, 12:138-144.
  • [35]Giza CC, Kutcher JS, Ashwal S, Barth J, Getchius TSD, Gioia GA, Gronseth GS, Guskiewicz K, Mandel S, Manley G, McKeag DB, Thurman DJ, Zafonte R: Summary of evidence-based guideline update: evaluation and management of concussion in sports: Report of the Guideline Development Subcommittee of the American Academy of Neurology. Neurology 2013, 80:2250-2257.
  • [36]Bakay RAE, Ward AA Jr: Enzymatic changes in serum and cerebrospinal fluid in neurological injury. J Neurosurg 1983, 58:27-37.
  • [37]Diaz-Arrastia R, Wang KK, Papa L, Sorani MD, Yue JK, Puccio AM, McMahon PJ, Inoue T, Yuh EL, Lingsma HF, Maas AI, Valadka AB, Okonkwo DO, Manley, The Track-Tbi Investigators GT, Casey IS, Cheong M, Cooper SR, Dams-O'Connor K, Gordon WA, Hricik AJ, Menon DK, Mukherjee P, Schnyer DM, Sinha TK, Vassar MJ: Acute biomarkers of traumatic brain injury: relationship between plasma levels of ubiquitin C-Terminal Hydrolase-L1 and Glial Fibrillary Acidic Protein. J Neurotrauma 2014, 31:19-25.
  • [38]Light M, Minor KH, DeWitt P, Jasper KH, Davies SJ: Multiplex array proteomics detects increased MMP-8 in CSF after spinal cord injury. J Neuroinflammation 2012, 9:122. BioMed Central Full Text
  • [39]Yan X, Liu J, Luo Z, Ding Q, Mao X, Yan M, Yang S, Hu X, Huang J, Luo Z: Proteomic profiling of proteins in rat spinal cord induced by contusion injury. Neurochem Int 2010, 56:971-983.
  • [40]Boutte AM, Yao C, Kobeissy F, May Lu XC, Zhang Z, Wang KK, Schmid K, Tortella FC, Dave JR: Proteomic analysis and brain-specific systems biology in a rodent model of penetrating ballistic-like brain injury. Electrophoresis 2012, 33:3693-3704.
  • [41]Sjodin MO, Bergquist J, Wetterhall M: Mining ventricular cerebrospinal fluid from patients with traumatic brain injury using hexapeptide ligand libraries to search for trauma biomarkers. J Chromatogr B Analyt Technol Biomed Life Sci 2010, 878:2003. 2012
  • [42]Crawford F, Crynen G, Reed J, Mouzon B, Bishop A, Katz B, Ferguson S, Phillips J, Ganapathi V, Mathura V, Roses A, Mullan M: Identification of plasma biomarkers of TBI outcome using proteomic approaches in an APOE mouse model. J Neurotrauma 2012, 29:246-260.
  • [43]Ottens AK, Bustamante L, Golden EC, Yao C, Hayes RL, Wang KK, Tortella FC, Dave JR: Neuroproteomics: a biochemical means to discriminate the extent and modality of brain injury. J Neurotrauma 2010, 27:1837-1852.
  • [44]Guingab-Cagmat JD, Newsom K, Vakulenko A, Cagmat EB, Kobeissy FH, Zoltewicz S, Wang KK, Anagli J: In vitro MS-based proteomic analysis and absolute quantification of neuronal-glial injury biomarkers in cell culture system. Electrophoresis 2012, 33:3786-3797.
  • [45]Woodcock T, Morganti-Kossmann MC: The Role of Markers of Inflammation in Traumatic Brain Injury. Front Neurol 2013, 4:18.
  • [46]Yan EB, Satgunaseelan L, Paul E, Bye N, Nguyen P, Agyapomaa D, Kossmann T, Rosenfeld JV, Morganti-Kossmann MC: Post-Traumatic Hypoxia Is Associated with Prolonged Cerebral Cytokine Production, Higher Serum Biomarker Levels, and Poor Outcome in Patients with Severe Traumatic Brain Injury. J Neurotrauma 2014. doi:10.1089/neu.2013.3087
  • [47]Kadhim HJ, Duchateau J, Sebire G: Cytokines and brain injury: invited review. J Intensive Care Med 2008, 23:236-249.
  • [48]Bell MJ, Kochanek PM, Doughty LA, Carcillo JA, Adelson PD, Clark RS, Wisniewski SR, Whalen MJ, DeKosky ST: Interleukin-6 and interleukin-10 in cerebropinal fluid after severe traumatic brain injury in children. J Neurotrauma 1997, 14:451-457.
  • [49]Schneider Soares FM, Menezes de Souza N, Libório Schwarzbold M, Paim Diaz A, Costa Nunes J, Hohl A, Nunes Abreu da Silva P, Vieira J, Lisboa de Souza R, Moré Bertotti M, Schoder Prediger RD, Neves Linhares M, Bafica A, Walz R: Interleukin-10 Is an independent biomarker of severe traumatic brain injury prognosis. Neuroimmunomodulation 2012, 19:377-385.
  • [50]Kamm K, VanderKolk W, Lawrence C, Jonker M, Davis AT: The effect of traumatic brain injury upon the concentration and expression of interleukin-1β and Interleukin-10 in the Rat. J Trauma: Injury, Infection, Critical Care 2006, 60:152-157.
  • [51]Goyal A, Failla MD, Niyonkuru C, Amin K, Fabio A, Berger RP, Wagner AK: S100b as a prognostic biomarker in outcome prediction for patients with severe traumatic brain injury. J Neurotraum 2013, 30:946-957.
  • [52]Egea-Guerrero JJ, Murillo-Cabezas F, Gordillo-Escobar E, Rodríguez-Rodríguez A, Enamorado-Enamorado J, Revuelto-Rey J, Pacheco-Sánchez M, León-Justel A, Domínguez-Roldán JM, Vilches-Arenas A: S100B protein may detect brain death development after severe traumatic brain injury. J Neurotraum 2013, 30:1762-1769.
  • [53]Petzold A, Keir G, Lim D, Smith M, Thompson EJ: Cerebrospinal fluid (CSF) and serum S100B: release and wash-out pattern. Brain Research Bulletin 2003, 61:281-285.
  • [54]Fraser DD, Close TE, Rose KL, Ward R, Mehl M, Farrell C, Lacroix J, Creery D, Kesselman M, Stanimirovic D, Hutchison JS: Severe traumatic brain injury in children elevates glial fibrillary acidic protein in cerebrospinal fluid and serum*. Pediatric Critical Care Medicine 2011, 12:319-324.
  • [55]Nylén K, Öst M, Csajbok LZ, Nilsson I, Blennow K, Nellgård B, Rosengren L: Increased serum-GFAP in patients with severe traumatic brain injury is related to outcome. J Neurol Sci 2006, 240:85-91.
  • [56]Neselius S, Brisby H, Theodorsson A, Blennow K, Zetterberg H, Marcusson J: CSF-biomarkers in Olympic boxing: diagnosis and effects of repetitive head trauma. PLoS One 2012, 7:e33606.
  • [57]Neselius S, Zetterberg H, Blennow K, Marcusson J, Brisby H: Increased CSF levels of phosphorylated neurofilament heavy protein following bout in amateur boxers. PLoS One 2013, 8:e81249.
  • [58]Berger RP, Adelson PD, Pierce MC, Dulani T, Cassidy LD, Kochanek PM: Serum neuron-specific enolase, S100B, and myelin basic protein concentrations after inflicted and noninflicted traumatic brain injury in children. J Neurosurg (Pediatrics 1) 2005, 103:61-68.
  • [59]Takahashi K, Hasegawa S, Maeba S, Fukunaga S, Motoyama M, Hamano H, Ichiyama T: Serum tau protein level serves as a predictive factor for neurological prognosis in neonatal asphyxia. Brain and Development 2013. 10.1016/j.braindev.2013.10.007
  • [60]Liliang P-C, Liang C-L, Weng H-C, Lu K, Wang K-W, Chen H-J, Chuang J-H: Tau proteins in serum predict outcome after severe traumatic brain injury. J Surg Res 2010, 160:302-307.
  • [61]Neselius S, Zetterberg H, Blennow K, Randall J, Wilson D, Marcusson J, Brisby H: Olympic boxing is associated with elevated levels of the neuronal protein tau in plasma. Brain Inj 2013, 27:425-433.
  • [62]Franz G, Beer R, Kampfl A, Engelhardt K, Schmutzhard E, Ulmer H, Deisenhammer F: Amyloid beta 1–42 and tau in cerebrospinal fluid after severe traumatic brain injury. Neurology 2003, 60:1457-1461.
  • [63]Shiiya N, Kunihara T, Miyatake T, Matsuzaki K, Yasuda K: Tau protein in the cerebrospinal fluid is a marker of brain injury after aortic surgery. Ann Thorac Surg 2004, 77:2034-2038.
  • [64]Tsitsopoulos PP, Marklund N: Amyloid-beta peptides and tau protein as biomarkers in cerebrospinal and interstitial fluid following traumatic brain injury: a review of experimental and clinical studies. Front Neurol 2013, 4:79.
  • [65]Zemlan FP, Rosenberg WS, Luebbe PA, Campbell TA, Dean GE, Weiner NE, Cohen JA, Rudick RA, Woo D: Quantification of axonal damage in traumatic brain injury: affinity purification and characterization of cerebrospinal fluid tau proteins. J Neurochem 1999, 72:741-750.
  • [66]Emmerling MR, Morganti-Kossmann MC, Kossmann T, Stahel PF, Watson MD, Evans LM, Mehta PD, Spiegel K, Kuo YM, Roher AE, Raby CA: Traumatic brain injury elevates the Alzheimer's amyloid peptide A beta 42 in human CSF. A possible role for nerve cell injury. Ann N Y Acad Sci 2000, 903:118-122.
  • [67]Raby CA, Morganti-Kossmann MC, Kossmann T, Stahel PF, Watson MD, Evans LM, Mehta PD, Spiegel K, Kuo YM, Roher AE, Emmerling MR: Traumatic brain injury increases beta-amyloid peptide 1–42 in cerebrospinal fluid. J Neurochem 1998, 71:2505-2509.
  • [68]Mondello S, Akinyi L, Buki A, Robicsek SA, Gabrielli A, Tepas J, Papa L, Brophy GM, Tortella F, Hayes RL, Wang KKW: Clinical Utility of Serum Levels of Ubiquitin-C Terminal Hydrolase as a Biomarker for Severe Traumatic Brain Injury. Neurosurgery 2012, 70:666-675.
  • [69]Mondello S, Robicsek SA, Gabrielli A, Brophy GM, Papa L, Tepas J, Robertson C, Buki A, Scharf D, Jixiang M, Akinyi L, Muller U, Wang KKW, Hayes RL: αII-Spectrin Breakdown Products (SBDPs): Diagnosis and Outcome in Severe Traumatic Brain Injury Patients. J Neurotrauma 2010, 27:1203-1213.
  • [70]Mondello S, Gabrielli A, Catani S, D’Ippolito M, Jeromin A, Ciaramella A, Bossù P, Schmid K, Tortella F, Wang KKW, Hayes RL, Formisano R: Increased levels of serum MAP-2 at 6-months correlate with improved outcome in survivors of severe traumatic brain injury. Brain Injury 2012, 26:1629-1635.
  • [71]Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, Mehta N, Suter B, Bhide PG, Lo EH, Ericsson M, Moskowitz MA: Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice. J Cereb Blood Flow Metab 2008, 28:490-505.
  • [72]Farkas O, Lifshitz J, Povlishock JT: Mechanoporation induced by diffuse traumatic brain injury: an irreversible or reversible response to injury? J Neurosci 2006, 26:3130-3140.
  • [73]Barbee KA: Mechanical cell injury. Ann N Y Acad Sci 2005, 1066:67-84.
  • [74]Binder LI, Frankfurter A, Rebhun LI: The Distribution of Tau in the Mammalian Central Nervous System. J Cell Biol 1985, 101:1371-1378.
  • [75]Bitsch A, Horn C, Kemmling Y, Seipelt M, Hellenbrand U, Stiefel M, Ciesielczyk B, Cepek L, Bahn E, Ratzka P, Prange H, Otto M: Serum Tau protein level as a marker of axonal damage in acute ischemic stroke. European Neurology 2001, 47:45-51.
  • [76]Arroyo EJ, Schere SS: On the molecular architecture of myelinated fibers. Histochem Cell Biol 2000, 133:1-18.
  • [77]Woertgen C, Rothoerl RD, Holzschuh M, Metz C, Brawanski A: Comparison of serial S-100 and NSE serum measurements after severe head injury. Acta Neurochirurgica 1997, 139:1161-1165.
  • [78]Yamazaki Y, Yada K, Morii S, Kitahara T, Ohwada T: Diagnostic significance of serum neuron-specific enolase and myelin basic protein assay in patients with acute head injury. Surgical Neurology 1995, 43:267-270.
  • [79]Liu MC, Akle V, Zheng W, Kitlen J, O'Steen B, Larner SF, Dave JR, Tortella FC, Hayes RL, Wang KKW: Extensive degradation of myelin basic protein isoforms by calpain following traumatic brain injury. J Neurochem 2006, 98:700-712.
  • [80]Ottens AK, Golden EC, Bustamante L, Hayes RL, Denslow ND, Wang KKW: Proteolysis of multiple myelin basic protein isoforms after neurotrauma: characterization by mass spectrometry. J Neurochem 2008, 104:1404-1414.
  • [81]Ross SA, Cunningham RT, Johnston CF, Rowlands BJ: Neuron-specific enolase as an aid to outcome predicition in head injury. Brit J Neurosurg 1996, 10:471-476.
  • [82]Johnsson P: Markers of cerebral ischemia after cardiac surgery. J Cardiothorac Vasc Anesth 1996, 10:120-126.
  • [83]Caceres A, Payne MR, Binder LI, Steward O: Immunocytochemical Localization of Actin and Microtubule-Associated Protein MAP2 in Dendritic Spines. Proc Natl Acad Sci USA 1983, 80:1738-1742.
  • [84]Kitagawa K, Matsumoto M, Niinobe M, Mikoshiba K, Hata R, Ueda H, Handa N, Fukunaga R, Isaka Y, Kimura K, Kamada T: Microtubule-Associated Protein 2 as a sensitive marker for cerebral ischemic damage-immunohistochemical invetigation of dendritic damage. Neuroscience 1989, 31:401-411.
  • [85]Berger RP, Hayes RL, Richichi R, Beers SR, Wang KKW: Serum Concentrations of Ubiquitin C-Terminal Hydrolase-L1 and αII-Spectrin Breakdown Product 145 kDa Correlate with Outcome after Pediatric TBI. J Neurotrauma 2012, 29:162-167.
  • [86]Liu MC, Akinyi L, Scharf D, Mo JX, Larner SF, Muller U, Oli MW, Zheng WR, Kobeissy F, Papa L, Lu XC, Dave JR, Tortella FC, Hayes RL, Wang KKW: Ubiquitin C-terminal hydrolase-L1 as a biomarker for ischemic and traumatic brain injury in rats. Eur J Neurosci 2010, 31:722-732.
  • [87]Siman R, Giovannone N, Toraskar N, Frangos S, Stein SC, Levine JM, Kumar MA: Evidence that a panel of neurodegeneration biomarkers predicts vasospasm, infarction, and outcome in aneurysmal subarachnoid hemorrhage. PLoS One 2011, 6:e28938.
  • [88]Pang L, Wu Y, Dong N, Xu DH, Wang DW, Wang ZH, Li XL, Bian M, Zhao HJ, Liu XL, Zhang N: Elevated serum ubiquitin C-terminal hydrolase-L1 levels in patients with carbon monoxide poisoning. Clin Biochem 2014, 47:72-76.
  • [89]Papa L, Akinyi L, Liu MC, Pineda JA, Tepas JJ, Oli MW, Zheng W, Robinson G, Robicsek SA, Gabrielli A, Heaton SC, Hannay HJ, Demery JA, Brophy GM, Layon J, Robertson CS, Hayes RL, Wang KKW: Ubiquitin C-terminal hydrolase is a novel biomarker in humans for severe traumatic brain injury. Crit Care Med 2010, 38:138-144.
  • [90]Pike BR, Flint J, Dutta S, Johnson E, Wang KKW, Hayes RL: Accumulation of non-erythroid αII-spectrin and calpain-cleaved αII-spectrin breakdown products in cerebrospinal fluid after traumatic brain injury in rats. J Neurochem 2001, 78:1297-1306.
  • [91]Tomas M, Marin MP, Portoles M, Megias L, Gomez-Lechon MJ, Renau-Piqueras J: Ethanol affects calmodulin and the calmodulin-binding proteins neuronal nitric oxide synthase and alphaII-spectrin (alpha-fodrin) in the nucleus of growing and differentiated rat astrocytes in primary culture. Toxicol In Vitro 2007, 21:1039-1049.
  • [92]Siman R, Giovannone N, Hanten G, Wilde EA, McCauley SR, Hunter JV, Li X, Levin HS, Smith DH: Evidence That the Blood Biomarker SNTF Predicts Brain Imaging Changes and Persistent Cognitive Dysfunction in Mild TBI Patients. Front Neurol 2013, 4:190.
  • [93]Riederer BM, Zagon IS, Goodman SR: Brain spectrin(240/235) and brain spectrin(240/235E): two distinct spectrin subtypes with different locations within Mammalian neural cells. J Cell Biol 1986, 102:2088-2097.
  • [94]Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, Jacob Filho W, Lent R, Herculano-Houzel S: Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 2009, 513:532-541.
  • [95]Reier PJ, Houle JD: The glial scar: its bearing on axonal elongation and transplantation approaches to CNS repair. Adv Neurol 1988, 47:87-138.
  • [96]McGraw J, Hiebert GW, Steeves JD: Modulating astrogliosis after neurotrauma. J Neurosci Res 2001, 63:109-115.
  • [97]Wanner IB, Anderson MA, Song B, Levine J, Fernandez A, Gray-Thompson Z, Ao Y, Sofroniew MV: Glial scar borders are formed by newly proliferated, elongated astrocytes that interact to corral inflammatory and fibrotic cells via STAT3-dependent mechanisms after spinal cord injury. J Neurosci 2013, 33:12870-12886.
  • [98]Sofroniew MV, Vinters HV: Astrocytes: biology and pathology. Acta Neuropathol 2010, 119:7-35.
  • [99]Burda JE, Sofroniew MV: Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 2014, 81:229-248.
  • [100]Li DR, Zhang F, Wang Y, Tan XH, Qiao DF, Wang HJ, Michiue T, Maeda H: Quantitative analysis of GFAP- and S100 protein-immunopositive astrocytes to investigate the severity of traumatic brain injury. Legal Med 2012, 14:84-92.
  • [101]Gelot A, Villapol S, Billette de Villemeur T, Renolleau S, Charriaut-Marlangue C: Astrocytic demise in the developing rat and human brain after hypoxic-ischemic damage. Dev Neurosci 2009, 31:459-470.
  • [102]Chen Y, Swanson RA: Astrocytes and brain injury. J Cereb Blood Flow Metab 2003, 23:137-149.
  • [103]Liu D, Smith CL, Barone FC, Ellison JA, Lysko PG, Li K, Simpson IA: Astrocytic demise precedes delayed neuronal death in focal ischemic rat brain. Brain Res Mol Brain Res 1999, 68:29-41.
  • [104]Colombo JA, Yanez A, Lipina SJ: Interlaminar astroglial processes in the cerebral cortex of non human primates: response to injury. J Hirnforsch 1997, 38:503-512.
  • [105]Colombo JA, Yanez A, Puissant V, Lipina S: Long, interlaminar astroglial cell processes in the cortex of adult monkeys. J Neurosci Res 1995, 40:551-556.
  • [106]Shakeri M, Mahdkhah A, Panahi F: S100B protein as a post-traumatic biomarker for prediction of brain death in association with patient outcomes. Arch Trauma Res 2013, 2:76-80.
  • [107]Korfias S, Stranjalis G, Psachoulia C, Vasiliadis C, Pitaridis M, Boviatsis E, Sakas DE: Slight and short-lasting increase of serum S-100B protein in extra-cranial trauma. Brain Injury 2006, 20:867-872.
  • [108]Thelin EP, Johannesson L, Nelson D, Bellander B-M: S100B is an important outcome predictor in traumatic brain injury. J Neurotraum 2013, 30:519-528.
  • [109]Marchi N, Cavaglia M, Fazio V, Bhudia S, Hallene K, Janigro D: Peripheral markers of blood–brain barrier damage. Clinica Chimica Acta 2004, 342:1-12.
  • [110]Mancardi GL, Cadoni A, Tabaton M, Schenone A, Zicca A, De Martini I, Bianchini D, Damiani G, Zaccheo D: Schwann cell GFAP expression increases in axonal neuropathies. J Neurol Sci 1991, 102:177-183.
  • [111]Pellitteri R, Spatuzza M, Stanzani S, Zaccheo D: Biomarkers expression in rat olfactory ensheathing cells. Front Biosci 2010, 2:289-298.
  • [112]Eng LF, Ghirnikar RS: GFAP and astrogliosis. Brain Pathol 1994, 4:229-237.
  • [113]Lumpkins KM, Bochicchio GV, Keledjian K, Simard JM, McCunn M, Scalea T: Glial fibrillary acidic protein is highly correlated with brain injury. J Trauma 2008, 65:778-782. discussion 782–774
  • [114]Papa L, Lewis LM, Falk JL, Zhang Z, Silvestri S, Giordano P, Brophy GM, Demery JA, Dixit NK, Ferguson I, Liu MC, Mo J, Akinyi L, Schmid K, Mondello S, Robertson CS, Tortella FC, Hayes RL, Wang KKW: Elevated levels of serum glial fibrillary acidic protein breakdown products in mild and moderate traumatic brain injury are associated with intracranial lesions and neurosurgical intervention. Ann Emerg Med 2012, 59:471-483.
  • [115]Okonkwo DO, Yue JK, Puccio AM, Panczykowski DM, Inoue T, McMahon PJ, Sorani MD, Yuh EL, Lingsma HF, Maas AI, Valadka AB, Manley, Transforming R, Clinical Knowledge In Traumatic Brain Injury Investigators Including GT, Casey SS, Cheong M, Cooper SR, Dams-O'Connor K, Gordon WA, Hricik AJ, Hochberger K, Menon DK, Mukherjee P, Sinha TK, Schnyer DM, Vassar MJ: GFAP-BDP as an acute diagnostic marker in traumatic brain injury: results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma 2013, 30:1490-1497.
  • [116]Zoltewicz JS, Scharf D, Yang B, Chawla A, Newsom KJ, Fang L: Characterization of Antibodies that Detect Human GFAP after Traumatic Brain Injury. Biomarker Insights 2012, 7:71-79.
  • [117]Lafrenaye AD, McGinn MJ, Povlishock JT: Increased intracranial pressure after diffuse traumatic brain injury exacerbates neuronal somatic membrane poration but not axonal injury: evidence for primary intracranial pressure-induced neuronal perturbation. J Cereb Blood Flow Metab 2012, 32:1919-1932.
  • [118]Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK: Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 2005, 22:42-75.
  • [119]Smith DH, Soares HD, Pierce JS, Perlman KG, Saatman KE, Meaney DF, Dixon CE, McIntosh TK: A model of parasagittal controlled cortical impact in the mouse: cognitive and histopathologic effects. J Neurotrauma 1995, 12:169-178.
  • [120]Foda MA, Marmarou A: A new model of diffuse brain injury in rats. Part II: Morphological characterization. J Neurosurg 1994, 80:301-313.
  • [121]Marmarou A, Foda MA, van den Brink W, Campbell J, Kita H, Demetriadou K: A new model of diffuse brain injury in rats. Part I: Pathophysiology and biomechanics. J Neurosurg 1994, 80:291-300.
  • [122]Risling M, Davidsson J: Experimental animal models for studies on the mechanisms of blast-induced neurotrauma. Front Neurol 2012, 3:30.
  • [123]Kochanek PM, Bramlett H, Dietrich WD, Dixon CE, Hayes RL, Povlishock J, Tortella FC, Wang KK: A novel multicenter preclinical drug screening and biomarker consortium for experimental traumatic brain injury: operation brain trauma therapy. J Trauma 2011, 71:S15-S24.
  • [124]Yue JK, Vassar MJ, Lingsma HF, Cooper SR, Okonkwo DO, Valadka AB, Gordon WA, Maas AI, Mukherjee P, Yuh EL, Puccio AM, Schnyer DM, Manley GT, Track-Tbi I, Casey SS, Cheong M, Dams-O'Connor K, Hricik AJ, Knight EE, Kulubya ES, Menon DK, Morabito DJ, Pacheco JL, Sinha TK: Transforming research and clinical knowledge in traumatic brain injury pilot: multicenter implementation of the common data elements for traumatic brain injury. J Neurotrauma 2013, 30:1831-1844.
  • [125]Hicks R, Giacino J, Harrison-Felix C, Manley G, Valadka A, Wilde EA: Progress in developing common data elements for traumatic brain injury research: version two–the end of the beginning. J Neurotrauma 2013, 30:1852-1861.
  • [126]Manley GT, Diaz-Arrastia R, Brophy M, Engel D, Goodman C, Gwinn K, Veenstra TD, Ling G, Ottens AK, Tortella F, Hayes RL: Common data elements for traumatic brain injury: recommendations from the biospecimens and biomarkers working group. Arch Phys Med Rehabil 2010, 91:1667-1672.
  • [127]Lubieniecka JM, Streijger F, Lee JH, Stoynov N, Liu J, Mottus R, Pfeifer T, Kwon BK, Coorssen JR, Foster LJ, Grigliatti TA, Tetzlaff W: Biomarkers for severity of spinal cord injury in the cerebrospinal fluid of rats. PLoS One 2011, 6:e19247.
  • [128]Svetlov SI, Prima V, Kirk DR, Gutierrez H, Curley KC, Hayes RL, Wang KKW: Morphologic and biochemical characterization of brain injury in a model of controlled blast overpressure exposure. J Trauma: Injury, Infection, Critical Care 2010, 69:795-804.
  • [129]Svetlov SI, Prima V, Glushakova O, Svetlov A, Kirk DR, Gutierrez H, Serebruany VL, Curley KC, Wang KK, Hayes RL: Neuro-glial and systemic mechanisms of pathological responses in rat models of primary blast overpressure compared to "composite" blast. Front Neurol 2012, 3:15.
  • [130]Ahmed FA, Kamnaksh A, Kovesdi E, Long JB, Agoston DV: Long-term consequences of single and multiple mild blast exposure on select physiological parameters and blood-based biomarkers. Electrophoresis 2013, 34:2229-2233.
  • [131]Ahmed F, Gyorgy A, Kamnaksh A, Ling G, Tong L, Parks S, Agoston D: Time-dependent changes of protein biomarker levels in the cerebrospinal fluid after blast traumatic brain injury. Electrophoresis 2012, 33:3705-3711.
  • [132]Gyorgy A, Ling G, Wingo D, Walker J, Tong L, Parks S, Januszkiewicz A, Baumann R, Agoston DV: Time-dependent changes in serum biomarker levels after blast traumatic brain injury. J Neurotrauma 2011, 28:1121-1126.
  • [133]Zetterberg H, Smith DH, Blennow K: Biomarkers of mild traumatic brain injury in cerebrospinal fluid and blood. Nature Rev Neurol 2013, 9:201-210.
  • [134]Guingab-Cagmat JD, Cagmat EB, Hayes RL, Anagli J: Integration of proteomics, bioinformatics, and systems biology in traumatic brain injury biomarker discovery. Front Neurol 2013, 4:61.
  • [135]Agoston DV, Risling M, Bellander BM: Bench-to-bedside and bedside back to the bench; coordinating clinical and experimental traumatic brain injury studies. Front Neurol 2012, 3:3.
  • [136]Hanrieder J, Wetterhall M, Enblad P, Hillered L, Bergquist J: Temporally resolved differential proteomic analysis of human ventricular CSF for monitoring traumatic brain injury biomarker candidates. J Neurosci Meth 2009, 177:469-478.
  • [137]Ross PL: Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents. Mol Cell Proteomics 2004, 3:1154-1169.
  • [138]Wiese S, Reidegeld KA, Meyer HE, Warscheid B: Protein labeling by iTRAQ: A new tool for quantitative mass spectrometry in proteome research. Proteomics 2007, 7:340-350.
  • [139]Wanner IB: An in vitro trauma model to study rodent and human astrocyte reactivity. Methods Mol Biol 2012, 814:189-219.
  • [140]Wanner IB, Deik M, Torres M, Rosendahl AR, Neary JT, Lemmon VP, Bixby JL: A new in vitro model of the glial scar inhibits axon growth. Glia 2008, 56:1691-1709.
  • [141]Sondej M, Doran P, Loo JA, Wanner I: Sample preparation of primary astrocyte cellular and released proteins for 2-D gel electrophoresis and protein identification by mass spectrometry. In Sample preparation in biological mass spectrometry. Edited by Ivanov A, Lazarev A. Dordrecht: Springer; 2011:829-849.
  • [142]Ellis EF, McKinney JS, Willoughby KA, Liang S, Povlishock JT: A new model for rapid stretch-induced injury of cells in culture: characterization of the model using astrocytes. J Neurotrauma 1995, 12:325-339.
  • [143]Ellis EF, Willoughby KA, Sparks SA, Chen T: S100B protein is released from rat neonatal neurons, astrocytes, and microglia by in vitro trauma and anti-S100 increases trauma-induced delayed neuronal injury and negates the protective effect of exogenous S100B on neurons. J Neurochem 2007, 101:1463-1470.
  • [144]Rzigalinski BA, Weber JT, Willoughby KA, Ellis EF: Intracellular free calcium dynamics in stretch-injured astrocytes. J Neurochem 1998, 70:2377-2385.
  • [145]Schenk S, Schoenhals GJ, de Souza G, Mann M: A high confidence, manually validated human blood plasma protein reference set. BMC Med Genomics 2008, 1:41. BioMed Central Full Text
  • [146]Omenn GS, States DJ, Adamski M, Blackwell TW, Menon R, Hermjakob H, Apweiler R, Haab BB, Simpson RJ, Eddes JS, Kapp EA, Moritz RL, Chan DW, Rai AJ, Admon A, Aebersold R, Eng J, Hancock WS, Hefta SA, Meyer H, Paik YK, Yoo JS, Ping P, Pounds J, Adkins J, Qian X, Wang R, Wasinger V, Wu CY, Zhao X, Zeng R, Archakov A, Tsugita A, Beer I, Pandey A, Pisano M, Andrews P, Tammen H, Speicher DW, Hanash SM: Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database. Proteomics 2005, 5:3226-3245.
  • [147]Waybright TJ: Preparation of human cerebrospinal fluid for proteomics biomarker analysis. Methods Mol Biol 2013, 1002:61-70.
  • [148]Theilacker N, Roller EE, Barbee KD, Franzreb M, Huang X: Multiplexed protein analysis using encoded antibody-conjugated microbeads. J Royal Soc Interf 2011, 8:1104-1113.
  • [149]Kingsmore SF: Multiplexed protein measurement: technologies and applications of protein and antibody arrays. Nat Rev Drug Discov 2006, 5:310-320.
  • [150]Barr JR, Maggio VL, Patterson DG Jr, Cooper GR, Henderson LO, Turner WE, Smith SJ, Hannon H, Needham LL, Sampson EJ: Isotope dilution-mass spectrometric quantification of specific proteins: model application with apoliprotein A-1. Clin Chem 1996, 42:1672-1682.
  • [151]Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP: Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 2003, 100:6940-6945.
  • [152]Roschinger W, Olgemoller B, Fingerhut R, Liebl B, Roscher AA: Advances in analytical mass spectrometry to improve screening for inherited metabolic diseases. Eur J Pediat 2003, 162:S67-S76.
  • [153]Liao H, Wu J, Kuhn E, Chin W, Chang B, Jones MD, O'Neil S, Clauser KR, Karl J, Hasler F, Roubenoff R, Zolg W, Guild BC: Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arth Rheum 2004, 50:3792-3803.
  • [154]Struys EA, Jansen EEW, De Meer K, Jakobs C: Determination of S-Adenosylmethionine and S-Adenosulhomocysteine in Plasma and Cerebrospinal Fluid by Stable-Isotope DIlution Tandem Mass Spectrometry. Clin Chem 2000, 46:1650-1656.
  • [155]Anderson L, Anderson NG, Haines LR, Hardie DB, Olafson RW, Pearson TW: Mass Spectrometric Quantification of Peptides and Proteins Using Stable Isotope Standards and Capture by Anti-peptide Antibodies (SISCAPA). J Proteome Res 2004, 3:235-244.
  • [156]Ahn YH, Lee YJ, Lee YJ, Kim Y-S, Ko JH, Yoo JS: Quantitative Analysis of an Aberrant Glycoform of TIMP1 from Colon Cancer Serum by L-PHA-Enrichment and SISCAPA with MRM Mass Spectrometry. J Proteome Res 2009, 8:4216-4224.
  • [157]Zhang Y, Hao Z, Kellmann M, Huhmer A: HR/AM Targeted Peptide Quantitation on a Q Exactive MS: a Unique Combination of High Selectivity, Sensitivity, and Throughput. 2012. http://planetorbitrap.com/data/uploads/ZFS1334248563484_AN554_63517_HRAM-Q_Exactive_0412S.pdf webcite
  文献评价指标  
  下载次数:9次 浏览次数:13次