期刊论文详细信息
Clinical Proteomics
An integrated quantification method to increase the precision, robustness, and resolution of protein measurement in human plasma samples
Paul Kearney2  Stephen W Hunsucker2  Kenneth C Fang2  Douglas Spicer2  JoAnne Mulligan2  Matthew McLean3  Pui-Yee Fong2  Mi-Youn Brusniak1  Clive Hayward2  Lik Wee Lee2  Xiao-jun Li2 
[1] Current address: Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N., M4-A830, 98109 Seattle, WA, USA;Integrated Diagnostics, 219 Terry Avenue North, Suite 100, 98109 Seattle, WA, USA;Current address: DuPont Industrial Biosciences, 925 Page Mill Road, Palo, 94304 Alto, CA, USA
关键词: Bioinformatics;    Immunoaffinity depletion;    Mass spectrometry;    Clinical proteomics;    Quantitative proteomics;    Plasma or serum analysis;    Multiple reaction monitoring;   
Others  :  1120416
DOI  :  10.1186/1559-0275-12-3
 received in 2014-10-02, accepted in 2014-12-26,  发布年份 2015
PDF
【 摘 要 】

Background

Current quantification methods for mass spectrometry (MS)-based proteomics either do not provide sufficient control of variability or are difficult to implement for routine clinical testing.

Results

We present here an integrated quantification (InteQuan) method that better controls pre-analytical and analytical variability than the popular quantification method using stable isotope-labeled standard peptides (SISQuan). We quantified 16 lung cancer biomarker candidates in human plasma samples in three assessment studies, using immunoaffinity depletion coupled with multiple reaction monitoring (MRM) MS. InteQuan outperformed SISQuan in precision in all three studies and tolerated a two-fold difference in sample loading. The three studies lasted over six months and encountered major changes in experimental settings. Nevertheless, plasma proteins in low ng/ml to low μg/ml concentrations were measured with a median technical coefficient of variation (CV) of 11.9% using InteQuan. The corresponding median CV using SISQuan was 15.3% after linear fitting. Furthermore, InteQuan surpassed SISQuan in measuring biological difference among clinical samples and in distinguishing benign versus cancer plasma samples.

Conclusions

We demonstrated that InteQuan is a simple yet robust quantification method for MS-based quantitative proteomics, especially for applications in biomarker research and in routine clinical testing.

【 授权许可】

   
2015 Li et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150210030231276.pdf 680KB PDF download
Figure 4. 114KB Image download
Figure 3. 34KB Image download
Figure 2. 133KB Image download
Figure 1. 118KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Huttenhain R, Malmstrom J, Picotti P, Aebersold R: Perspectives of targeted mass spectrometry for protein biomarker verification. Curr Opin Chem Biol 2009, 13:518-25.
  • [2]Kuzyk MA, Smith D, Yang J, Cross TJ, Jackson AM, Hardie DB, et al.: Multiple reaction monitoring-based, multiplexed, absolute quantitation of 45 proteins in human plasma. Mol Cell Proteomics 2009, 8:1860-77.
  • [3]Addona TA, Abbatiello SE, Schilling B, Skates SJ, Mani DR, Bunk DM, et al.: Multi-site assessment of the precision and reproducibility of multiple reaction monitoring-based measurements of proteins in plasma. Nat Biotechnol 2009, 27:633-41.
  • [4]Kuhn E, Whiteaker JR, Mani DR, Jackson AM, Zhao L, Pope ME, et al.: Interlaboratory evaluation of automated, multiplexed peptide immunoaffinity enrichment coupled to multiple reaction monitoring mass spectrometry for quantifying proteins in plasma. Mol Cell Proteomics 2012, 11(6):M111.013854. doi: 10.1074/mcp.M111.013854
  • [5]Anderson L, Hunter CL: Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins. Mol Cell Proteomics 2006, 5:573-88.
  • [6]Li XJ, Hayward C, Fong PY, Dominguez M, Hunsucker SW, Lee LW, et al.: A blood-based proteomic classifier for the molecular characterization of pulmonary nodules. Sci Transl Med 2013, 5:207ra142.
  • [7]Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, et al.: A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 2011, 29:625-34.
  • [8]Huttenhain R, Soste M, Selevsek N, Rost H, Sethi A, Carapito C, et al.: Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci Transl Med 2012, 4:142ra194.
  • [9]Addona TA, Shi X, Keshishian H, Mani DR, Burgess M, Gillette MA, et al.: A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat Biotechnol 2011, 29:635-43.
  • [10]Anderson NL, Anderson NG: The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics 2002, 1:845-67.
  • [11]Shi T, Su D, Liu T, Tang K, Camp DG 2nd, Qian WJ, et al.: Advancing the sensitivity of selected reaction monitoring-based targeted quantitative proteomics. Proteomics 2012, 12:1074-92.
  • [12]Barr JR, Maggio VL, Patterson DG Jr, Cooper GR, Henderson LO, Turner WE, et al.: Isotope dilution–mass spectrometric quantification of specific proteins: model application with apolipoprotein A-I. Clin Chem 1996, 42:1676-82.
  • [13]Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP: Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci U S A 2003, 100:6940-5.
  • [14]Picard G, Lebert D, Louwagie M, Adrait A, Huillet C, Vandenesch F, et al.: PSAQ standards for accurate MS-based quantification of proteins: from the concept to biomedical applications. J Mass Spectrom 2012, 47:1353-63.
  • [15]Hanke S, Besir H, Oesterhelt D, Mann M: Absolute SILAC for accurate quantitation of proteins in complex mixtures down to the attomole level. J Proteome Res 2008, 7:1118-30.
  • [16]Singh S, Springer M, Steen J, Kirschner MW, Steen H: FLEXIQuant: a novel tool for the absolute quantification of proteins, and the simultaneous identification and quantification of potentially modified peptides. J Proteome Res 2009, 8:2201-10.
  • [17]Rivers J, Simpson DM, Robertson DH, Gaskell SJ, Beynon RJ: Absolute multiplexed quantitative analysis of protein expression during muscle development using QconCAT. Mol Cell Proteomics 2007, 6:1416-27.
  • [18]Zeiler M, Straube WL, Lundberg E, Uhlen M, Mann M: A Protein Epitope Signature Tag (PrEST) library allows SILAC-based absolute quantification and multiplexed determination of protein copy numbers in cell lines. Mol Cell Proteomics 2012, 11(3):O111.009613. doi: 10.1074/mcp.O111.009613
  • [19]Zhang H, Liu Q, Zimmerman LJ, Ham AJ, Slebos RJ, Rahman J, et al.: Methods for peptide and protein quantitation by liquid chromatography-multiple reaction monitoring mass spectrometry. Mol Cell Proteomics 2011, 10(6):M110.006593. doi:10.1074/mcp.M110.006593
  • [20]Ludwig C, Claassen M, Schmidt A, Aebersold R: Estimation of absolute protein quantities of unlabeled samples by selected reaction monitoring mass spectrometry. Mol Cell Proteomics 2012, 11(3):M111.013987. doi: 10.1074/mcp.M111.013987
  • [21]Abbatiello SE, Mani DR, Schilling B, Maclean B, Zimmerman LJ, Feng X, et al.: Design, implementation and multisite evaluation of a system suitability protocol for the quantitative assessment of instrument performance in Liquid Chromatography-Multiple Reaction Monitoring-MS (LC-MRM-MS). Mol Cell Proteomics 2013, 12:2623-39.
  • [22]Griffin NM, Yu J, Long F, Oh P, Shore S, Li Y, et al.: Label-free, normalized quantification of complex mass spectrometry data for proteomic analysis. Nat Biotechnol 2010, 28:83-9.
  • [23]Vachani A, Pass HI, Rom WN, Midthun DE, Edell ES, Laviolette M, et al.: Validation of a multi-protein plasma classifier to identify benign lung nodules. J Thorac Oncoldoi: 10.1097/JTO.0000000000000447
  • [24]Chang CY, Sabido E, Aebersold R, Vitek O: Targeted protein quantification using sparse reference labeling. Nat Methods 2014, 11:301-4.
  • [25]Qian WJ, Kaleta DT, Petritis BO, Jiang H, Liu T, Zhang X, et al.: Enhanced detection of low abundance human plasma proteins using a tandem IgY12-SuperMix immunoaffinity separation strategy. Mol Cell Proteomics 2008, 7:1963-73.
  • [26]Farrah T, Deutsch EW, Omenn GS, Campbell DS, Sun Z, Bletz JA, et al.: A high-confidence human plasma proteome reference set with estimated concentrations in PeptideAtlas. Mol Cell Proteomics 2011, 10(9):M110.006353. doi: 10.1074/mcp.M110.006353
  • [27]Xu Q-S, Liang Y-Z: Monte Carlo cross validation. Chemometr Intell Lab Syst 2001, 56:1-11.
  • [28]Scherer A: Batch effects and noise in microarray experiments: sources and solutions. J. Wiley: Chichester, U.K; 2009.
  • [29]Boedigheimer MJ, Wolfinger RD, Bass MB, Bushel PR, Chou JW, Cooper M, et al.: Sources of variation in baseline gene expression levels from toxicogenomics study control animals across multiple laboratories. BMC Genomics 2008, 9:285. BioMed Central Full Text
  • [30]Chen C, Grennan K, Badner J, Zhang D, Gershon E, Jin L, et al.: Removing batch effects in analysis of expression microarray data: an evaluation of six batch adjustment methods. PLoS One 2011, 6(2):e17238. doi: 10.1371/journal.pone.0017238
  • [31]Reimer J, Shamshurin D, Harder M, Yamchuk A, Spicer V, Krokhin OV: Effect of cyclization of N-terminal glutamine and carbamidomethyl-cysteine (residues) on the chromatographic behavior of peptides in reversed-phase chromatography. J Chromatogr A 2011, 1218:5101-7.
  • [32]Micheel C, Nass SJ, Omenn GS, Institute of Medicine (U.S.): Committee on the review of omics-based tests for predicting patient outcomes in clinical trials. In Evolution of translational omics: lessons learned and the path forward. Washington, D.C: National Academies Press; 2012.
  • [33]Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al.: A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med 2004, 351:2817-26.
  • [34]Deng MC, Eisen HJ, Mehra MR, Billingham M, Marboe CC, Berry G, et al.: Noninvasive discrimination of rejection in cardiac allograft recipients using gene expression profiling. Am J Transplant 2006, 6:150-60.
  • [35]Lange V, Picotti P, Domon B, Aebersold R: Selected reaction monitoring for quantitative proteomics: a tutorial. Mol Syst Biol 2008, 4:222.
  • [36]Picotti P, Rinner O, Stallmach R, Dautel F, Farrah T, Domon B, et al.: High-throughput generation of selected reaction-monitoring assays for proteins and proteomes. Nat Methods 2010, 7:43-6.
  • [37]Janes H, Pepe MS: Adjusting for covariates in studies of diagnostic, screening, or prognostic markers: an old concept in a new setting. Am J Epidemiol 2008, 168:89-97.
  • [38]Huang Y, Pepe MS: Biomarker evaluation and comparison using the controls as a reference population. Biostatistics 2009, 10:228-44.
  • [39]DeLong ER, DeLong DM, Clarke-Pearson DL: Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics 1988, 44:837-45.
  • [40]Press WH, Teukolsky SA, Vetterling WT, Flannery BP: Numerical recipes in C: the art of scientific computing. 2nd edition. Cambridge; New York: Cambridge University Press; 1992.
  文献评价指标  
  下载次数:44次 浏览次数:7次