期刊论文详细信息
BMC Bioinformatics
A new method to measure complexity in binary or weighted networks and applications to functional connectivity in the human brain
Methodology Article
Klaus Hahn1  Peter R. Massopust2  Sergei Prigarin3 
[1] Institute of Computational Biology, HMGU–German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany;Institute of Computational Biology, HMGU–German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany;Centre of Mathematics, Research Unit M6, Technische Universität München, Boltzmannstrasse 3, 85747, Garching bei München, Germany;Novosibirsk State University, Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia;
关键词: Network analysis;    Complexity measure;    Computational algorithm;    Fractal dimension;    Human brain application;    Functional connectivity;   
DOI  :  10.1186/s12859-016-0933-9
 received in 2015-10-02, accepted in 2016-01-29,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundNetworks or graphs play an important role in the biological sciences. Protein interaction networks and metabolic networks support the understanding of basic cellular mechanisms. In the human brain, networks of functional or structural connectivity model the information-flow between cortex regions. In this context, measures of network properties are needed. We propose a new measure, Ndim, estimating the complexity of arbitrary networks. This measure is based on a fractal dimension, which is similar to recently introduced box-covering dimensions. However, box-covering dimensions are only applicable to fractal networks. The construction of these network-dimensions relies on concepts proposed to measure fractality or complexity of irregular sets in ℝn\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$\mathbb {R}^{n}$\end{document}.ResultsThe network measure Ndim grows with the proliferation of increasing network connectivity and is essentially determined by the cardinality of a maximum k-clique, where k is the characteristic path length of the network. Numerical applications to lattice-graphs and to fractal and non-fractal graph models, together with formal proofs show, that Ndim estimates a dimension of complexity for arbitrary graphs. Box-covering dimensions for fractal graphs rely on a linear log−log plot of minimum numbers of covering subgraph boxes versus the box sizes. We demonstrate the affinity between Ndim and the fractal box-covering dimensions but also that Ndim extends the concept of a fractal dimension to networks with non-linear log−log plots. Comparisons of Ndim with topological measures of complexity (cost and efficiency) show that Ndim has larger informative power. Three different methods to apply Ndim to weighted networks are finally presented and exemplified by comparisons of functional brain connectivity of healthy and depressed subjects.ConclusionWe introduce a new measure of complexity for networks. We show that Ndim has the properties of a dimension and overcomes several limitations of presently used topological and fractal complexity-measures. It allows the comparison of the complexity of networks of different type, e.g., between fractal graphs characterized by hub repulsion and small world graphs with strong hub attraction. The large informative power and a convenient computational CPU-time for moderately sized networks may make Ndim a valuable tool for the analysis of biological networks.

【 授权许可】

CC BY   
© Hahn et al. 2016

【 预 览 】
附件列表
Files Size Format View
RO202311105431264ZK.pdf 2893KB PDF download
Fig. 11 7606KB Image download
Fig. 6 889KB Image download
Fig. 3 198KB Image download
12951_2016_225_Article_IEq2.gif 1KB Image download
MediaObjects/40249_2023_1144_MOESM1_ESM.docx 1220KB Other download
Fig. 1 713KB Image download
Fig. 1 34KB Image download
12951_2015_155_Article_IEq91.gif 1KB Image download
Fig. 4 1202KB Image download
Fig. 1 632KB Image download
MediaObjects/40644_2023_618_MOESM2_ESM.docx 13KB Other download
12951_2016_171_Article_IEq6.gif 1KB Image download
Fig. 5 24KB Image download
MediaObjects/40644_2023_618_MOESM5_ESM.docx 13KB Other download
Fig. 1 137KB Image download
Fig. 2 673KB Image download
Fig. 1 407KB Image download
Fig. 2 3290KB Image download
Fig. 3 356KB Image download
MediaObjects/12888_2023_5198_MOESM1_ESM.docx 17KB Other download
Fig. 3 748KB Image download
12864_2017_4133_Article_IEq35.gif 1KB Image download
Fig. 2 476KB Image download
Fig. 1 153KB Image download
Fig. 1 302KB Image download
Fig. 1 849KB Image download
Fig. 2 503KB Image download
Fig. 3 453KB Image download
MediaObjects/13046_2023_2865_MOESM2_ESM.docx 22KB Other download
Fig. 5 2311KB Image download
729KB Image download
12936_2016_1315_Article_IEq8.gif 1KB Image download
Fig. 2 279KB Image download
Fig. 4 756KB Image download
Fig. 5 40KB Image download
MediaObjects/12944_2023_1921_MOESM1_ESM.pdf 34KB PDF download
Fig. 1 806KB Image download
Fig. 3 447KB Image download
MediaObjects/13046_2023_2865_MOESM4_ESM.tif 8864KB Other download
12944_2023_1932_Article_IEq1.gif 1KB Image download
Fig. 5 471KB Image download
Fig. 1 2453KB Image download
12944_2023_1932_Article_IEq4.gif 2KB Image download
Fig. 4 557KB Image download
MediaObjects/12888_2023_5232_MOESM1_ESM.docx 2566KB Other download
MediaObjects/12974_2023_2918_MOESM1_ESM.jpg 395KB Other download
Fig. 3 825KB Image download
12936_2016_1315_Article_IEq9.gif 1KB Image download
Fig. 5 466KB Image download
MediaObjects/12936_2023_4475_MOESM1_ESM.doc 84KB Other download
MediaObjects/12974_2023_2918_MOESM2_ESM.jpg 726KB Other download
12936_2015_966_Article_IEq12.gif 1KB Image download
MediaObjects/13046_2022_2359_MOESM2_ESM.docx 15KB Other download
Fig. 12 729KB Image download
Fig. 1 247KB Image download
MediaObjects/12951_2023_2121_MOESM1_ESM.docx 9323KB Other download
12936_2017_2051_Article_IEq54.gif 1KB Image download
Fig. 4 1137KB Image download
Fig. 2 2375KB Image download
Fig. 3 1009KB Image download
MediaObjects/12894_2023_1340_MOESM1_ESM.docx 25KB Other download
Fig. 2 401KB Image download
Fig. 2 531KB Image download
650KB Image download
【 图 表 】

Fig. 2

Fig. 2

Fig. 3

Fig. 2

Fig. 4

12936_2017_2051_Article_IEq54.gif

Fig. 1

Fig. 12

12936_2015_966_Article_IEq12.gif

Fig. 5

12936_2016_1315_Article_IEq9.gif

Fig. 3

Fig. 4

12944_2023_1932_Article_IEq4.gif

Fig. 1

Fig. 5

12944_2023_1932_Article_IEq1.gif

Fig. 3

Fig. 1

Fig. 5

Fig. 4

Fig. 2

12936_2016_1315_Article_IEq8.gif

Fig. 5

Fig. 3

Fig. 2

Fig. 1

Fig. 1

Fig. 1

Fig. 2

12864_2017_4133_Article_IEq35.gif

Fig. 3

Fig. 3

Fig. 2

Fig. 1

Fig. 2

Fig. 1

Fig. 5

12951_2016_171_Article_IEq6.gif

Fig. 1

Fig. 4

12951_2015_155_Article_IEq91.gif

Fig. 1

Fig. 1

12951_2016_225_Article_IEq2.gif

Fig. 3

Fig. 6

Fig. 11

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  文献评价指标  
  下载次数:0次 浏览次数:0次