期刊论文详细信息
BMC Bioinformatics
Detection and tracking of overlapping cell nuclei for large scale mitosis analyses
Methodology Article
Florencia di Pietro1  Xavier Morin1  France Rose2  Auguste Genovesio2  Yingbo Li3 
[1] Division cellulaire et neurogenèse, Institut de Biologie de l’Ecole Normale Superieure, PSL Research University, 46, rue d’Ulm, 75005, Paris, France;Scientific Center for Computational Biology, Institut de Biologie de l’Ecole Normale Superieure, CNRS-INSERM-ENS, PSL Research University, 46, rue d’Ulm, 75005, Paris, France;Scientific Center for Computational Biology, Institut de Biologie de l’Ecole Normale Superieure, CNRS-INSERM-ENS, PSL Research University, 46, rue d’Ulm, 75005, Paris, France;Division cellulaire et neurogenèse, Institut de Biologie de l’Ecole Normale Superieure, PSL Research University, 46, rue d’Ulm, 75005, Paris, France;
关键词: Image analysis;    Gaussian mixture;    High throughput;    Mitosis;    Time-lapse microscopy;    Cell detection;   
DOI  :  10.1186/s12859-016-1030-9
 received in 2016-03-10, accepted in 2016-04-09,  发布年份 2016
来源: Springer
PDF
【 摘 要 】

BackgroundCell culture on printed micropatterns slides combined with automated fluorescent microscopy allows for extraction of tens of thousands of videos of small isolated growing cell clusters. The analysis of such large dataset in space and time is of great interest to the community in order to identify factors involved in cell growth, cell division or tissue formation by testing multiples conditions. However, cells growing on a micropattern tend to be tightly packed and to overlap with each other. Consequently, image analysis of those large dynamic datasets with no possible human intervention has proven impossible using state of the art automated cell detection methods.ResultsHere, we propose a fully automated image analysis approach to estimate the number, the location and the shape of each cell nucleus, in clusters at high throughput. The method is based on a robust fit of Gaussian mixture models with two and three components on each frame followed by an analysis over time of the fitting residual and two other relevant features. We use it to identify with high precision the very first frame containing three cells. This allows in our case to measure a cell division angle on each video and to construct division angle distributions for each tested condition. We demonstrate the accuracy of our method by validating it against manual annotation on about 4000 videos of cell clusters.ConclusionsThe proposed approach enables the high throughput analysis of video sequences of isolated cell clusters obtained using micropatterns. It relies only on two parameters that can be set robustly as they reduce to the average cell size and intensity.

【 授权许可】

CC BY   
© Li et al. 2016

【 预 览 】
附件列表
Files Size Format View
RO202311102366261ZK.pdf 2587KB PDF download
Fig. 1 196KB Image download
41512_2023_158_Article_IEq26.gif 1KB Image download
Fig. 3 313KB Image download
MediaObjects/13046_2023_2865_MOESM7_ESM.tif 1295KB Other download
Fig. 4 1482KB Image download
350KB Image download
Fig. 4 463KB Image download
Fig. 9 519KB Image download
Fig. 9 217KB Image download
MediaObjects/13046_2023_2853_MOESM2_ESM.pdf 2039KB PDF download
42004_2023_1025_Article_IEq7.gif 1KB Image download
Fig. 2 256KB Image download
40517_2023_273_Article_IEq2.gif 1KB Image download
Fig. 1 205KB Image download
40517_2023_273_Article_IEq4.gif 1KB Image download
MediaObjects/40249_2023_1146_MOESM1_ESM.png 4112KB Other download
40517_2023_273_Article_IEq6.gif 1KB Image download
Fig. 2 679KB Image download
MediaObjects/41408_2023_929_MOESM1_ESM.pdf 265KB PDF download
40517_2023_273_Article_IEq9.gif 1KB Image download
【 图 表 】

40517_2023_273_Article_IEq9.gif

Fig. 2

40517_2023_273_Article_IEq6.gif

40517_2023_273_Article_IEq4.gif

Fig. 1

40517_2023_273_Article_IEq2.gif

Fig. 2

42004_2023_1025_Article_IEq7.gif

Fig. 9

Fig. 9

Fig. 4

Fig. 4

Fig. 3

41512_2023_158_Article_IEq26.gif

Fig. 1

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  文献评价指标  
  下载次数:7次 浏览次数:1次