期刊论文详细信息
BMC Bioinformatics
Selection of optimal quantile protein biomarkers based on cell-level immunohistochemistry data
Research
Hai Hu1  Amy R. Peck2  Yunguang Sun2  Hallgeir Rui2  Misung Yi3  Inna Chervoneva3  Tingting Zhan3  Albert J. Kovatich4  Craig D. Shriver4  Jeffrey A. Hooke4 
[1] Chan Soon-Shiong Institute of Molecular Medicine at Windber, Windber, PA, USA;Department of Pathology, Medical College of Wisconsin, 53226, Milwaukee, WI, USA;Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Thomas Jefferson University, 19107, Philadelphia, PA, USA;John P. Murtha Cancer Center, Uniformed Services University and Walter Reed National Military Medical Center, Bethesda, MD, USA;
关键词: Cellular protein expression;    Distribution quantiles;    Cancer biomarkers;    Tissue microarrays;    Breast cancer;   
DOI  :  10.1186/s12859-023-05408-8
 received in 2022-09-21, accepted in 2023-07-10,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

BackgroundProtein biomarkers of cancer progression and response to therapy are increasingly important for improving personalized medicine. Advanced quantitative pathology platforms enable measurement of protein expression in tissues at the single-cell level. However, this rich quantitative cell-by-cell biomarker information is most often not exploited. Instead, it is reduced to a single mean across the cells of interest or converted into a simple proportion of binary biomarker-positive or -negative cells.ResultsWe investigated the utility of retaining all quantitative information at the single-cell level by considering the values of the quantile function (inverse of the cumulative distribution function) estimated from a sample of cell signal intensity levels in a tumor tissue. An algorithm was developed for selecting optimal cutoffs for dichotomizing cell signal intensity distribution quantiles as predictors of continuous, categorical or survival outcomes. The proposed algorithm was used to select optimal quantile biomarkers of breast cancer progression based on cancer cells’ cell signal intensity levels of nuclear protein Ki-67, Proliferating cell nuclear antigen, Programmed cell death 1 ligand 2, and Progesterone receptor. The performance of the resulting optimal quantile biomarkers was validated and compared to the standard cancer compartment mean signal intensity markers using an independent external validation cohort. For Ki-67, the optimal quantile biomarker was also compared to established biomarkers based on percentages of Ki67-positive cells. For proteins significantly associated with PFS in the external validation cohort, the optimal quantile biomarkers yielded either larger or similar effect size (hazard ratio for progression-free survival) as compared to cancer compartment mean signal intensity biomarkers.ConclusionThe optimal quantile protein biomarkers yield generally improved prognostic value as compared to the standard protein expression markers. The proposed methodology has a broad application to single-cell data from genomics, transcriptomics, proteomics, or metabolomics studies at the single cell level.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309157807787ZK.pdf 1340KB PDF download
MediaObjects/12888_2023_4817_MOESM1_ESM.docx 932KB Other download
Fig. 4 108KB Image download
Fig. 1 349KB Image download
Fig. 6 296KB Image download
511KB Image download
MediaObjects/13068_2023_2372_MOESM1_ESM.pdf 1139KB PDF download
MediaObjects/13041_2023_1048_MOESM1_ESM.pdf 3081KB PDF download
Fig. 5 37KB Image download
Fig. 1 147KB Image download
Fig. 2 40KB Image download
Fig. 6 478KB Image download
Fig. 1 1240KB Image download
MediaObjects/40798_2023_621_MOESM1_ESM.docx 14KB Other download
13690_2023_1147_Article_IEq11.gif 1KB Image download
13690_2023_1147_Article_IEq18.gif 1KB Image download
13690_2023_1147_Article_IEq19.gif 1KB Image download
Fig. 3 335KB Image download
12862_2023_2133_Article_IEq130.gif 1KB Image download
Fig. 5 217KB Image download
Fig. 1 257KB Image download
Fig. 5 1155KB Image download
MediaObjects/13690_2023_1159_MOESM2_ESM.docx 36KB Other download
Fig. 4 219KB Image download
Fig. 4 232KB Image download
Fig. 1 1870KB Image download
Fig. 1 173KB Image download
Fig. 5 664KB Image download
Fig. 2 212KB Image download
40854_2023_500_Article_IEq6.gif 1KB Image download
Fig. 8 252KB Image download
Fig. 3 407KB Image download
Figs. 1 277KB Image download
MediaObjects/40798_2022_550_MOESM1_ESM.docx 12KB Other download
Fig. 1 875KB Image download
MediaObjects/40249_2023_1132_MOESM2_ESM.docx 23KB Other download
MediaObjects/40249_2023_1132_MOESM3_ESM.docx 27KB Other download
MediaObjects/12864_2023_9608_MOESM2_ESM.xlsx 82KB Other download
Fig. 15 148KB Image download
Fig. 7 2382KB Image download
Fig. 2 462KB Image download
【 图 表 】

Fig. 2

Fig. 7

Fig. 15

Fig. 1

Figs. 1

Fig. 3

Fig. 8

40854_2023_500_Article_IEq6.gif

Fig. 2

Fig. 5

Fig. 1

Fig. 1

Fig. 4

Fig. 4

Fig. 5

Fig. 1

Fig. 5

12862_2023_2133_Article_IEq130.gif

Fig. 3

13690_2023_1147_Article_IEq19.gif

13690_2023_1147_Article_IEq18.gif

13690_2023_1147_Article_IEq11.gif

Fig. 1

Fig. 6

Fig. 2

Fig. 1

Fig. 5

Fig. 6

Fig. 1

Fig. 4

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  文献评价指标  
  下载次数:24次 浏览次数:0次