期刊论文详细信息
BMC Cancer
Histone demethylase GASC1 - a potential prognostic and predictive marker in invasive breast cancer
Bozena Berdel3  Kaisa Nieminen3  Ylermi Soini2  Maria Tengström1  Marjo Malinen4  Veli-Matti Kosma2  Jorma J Palvimo4  Arto Mannermaa2 
[1] Cancer Center, Kuopio University Hospital, P.O. Box 1777, FI-70211, Kuopio, Finland
[2] Biocenter Kuopio, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
[3] Department of Pathology and Forensic Medicine, Institute of Clinical Medicine, University of Eastern Finland; Cancer Center of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
[4] Institute of Biomedicine/Medical Biochemistry, University of Eastern Finland, Kuopio, Finland
关键词: Tissue microarrays;    Survival;    Breast cancer;    GASC1;    Epigenetics;   
Others  :  1080094
DOI  :  10.1186/1471-2407-12-516
 received in 2012-05-10, accepted in 2012-11-05,  发布年份 2012
PDF
【 摘 要 】

Background

The histone demethylase GASC1 (JMJD2C) is an epigenetic factor suspected of involvement in development of different cancers, including breast cancer. It is thought to be overexpressed in the more aggressive breast cancer types based on mRNA expression studies on cell lines and meta analysis of human breast cancer sets. This study aimed to evaluate the prognostic and predictive value of GASC1 for women with invasive breast cancer.

Methods

All the 355 cases were selected from a cohort enrolled in the Kuopio Breast Cancer Project between April 1990 and December 1995. The expression of GASC1 was studied by immunohistochemistry (IHC) on tissue microarrays. Additionally relative GASC1 mRNA expression was measured from available 57 cases.

Results

In our material, 56% of the cases were GASC1 negative and 44% positive in IHC staining. Women with GASC1 negative tumors had two years shorter breast cancer specific survival and time to relapse than the women with GASC1 positive tumors (p=0.017 and p=0.034 respectively). The majority of GASC1 negative tumors were ductal cases (72%) of higher histological grade (84% of grade II and III altogether). When we evaluated estrogen receptor negative and progesterone receptor negative cases separately, there was 2 times more GASC1 negative than GASC1 positive tumors in each group (chi2, p= 0.033 and 0.001 respectively). In the HER2 positive cases, there was 3 times more GASC1 negative cases than GASC1 positives (chi2, p= 0.029). Patients treated with radiotherapy (n=206) and hormonal treatment (n=62) had better breast cancer specific survival, when they were GASC1 positive (Cox regression: HR=0.49, p=0.007 and HR=0.33, p=0.015, respectively). The expression of GASC1 mRNA was in agreement with the protein analysis.

Conclusions

This study indicates that the GASC1 is both a prognostic and a predictive factor for women with invasive breast cancer. GASC1 negativity is associated with tumors of more aggressive histopathological types (ductal type, grade II and III, ER negative, PR negative). Patients with GASC1 positive tumors have better breast cancer specific survival and respond better to radiotherapy and hormonal treatment.

【 授权许可】

   
2012 Berdel et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20141202223820995.pdf 679KB PDF download
Figure 8. 13KB Image download
Figure 7. 22KB Image download
Figure 6. 26KB Image download
Figure 5. 28KB Image download
Figure 4. 32KB Image download
Figure 3. 28KB Image download
Figure 2. 28KB Image download
Figure 1. 74KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Goldhirsch A, Ingle JN, Gelber RD, Coates AS, Thurlimann B, Senn HJ: Thresholds for therapies: highlights of the St Gallen International Expert Consensus on the primary therapy of early breast cancer 2009. Ann Oncol 2009, 20(8):1319-1329.
  • [2]Rodriguez-Paredes M, Esteller M: Cancer epigenetics reaches mainstream oncology. Nat Med 2011, 17(3):330-339.
  • [3]Sharma S, Kelly TK, Jones PA: Epigenetics in cancer. Carcinogenesis 2010, 31(1):27-36.
  • [4]Stefanska B, Karlic H, Varga F, Fabianowska-Majewska K, Haslberger A: Epigenetic mechanisms in anti-cancer actions of bioactive food components - the implications in cancer prevention. Br J Pharmacol 2012, 167(2):279-297.
  • [5]Van Neste L, Herman JG, Otto G, Bigley JW, Epstein JI, Van Criekinge W: The epigenetic promise for prostate cancer diagnosis. Prostate 2012, 72(11):1248-1261.
  • [6]Chiam K, Centenera MM, Butler LM, Tilley WD, Bianco-Miotto T: GSTP1 DNA methylation and expression status is indicative of 5-aza-2’-deoxycytidine efficacy in human prostate cancer cells. PLoS One 2011, 6(9):e25634.
  • [7]Gomori E, Pal J, Kovacs B, Doczi T: Concurrent hypermethylation of DNMT1, MGMT and EGFR genes in progression of gliomas. Diagn Pathol 2012, 7:8. BioMed Central Full Text
  • [8]Portela A, Esteller M: Epigenetic modifications and human disease. Nat Biotechnol 2010, 28(10):1057-1068.
  • [9]Cloos PA, Christensen J, Agger K, Maiolica A, Rappsilber J, Antal T, Hansen KH, Helin K: The putative oncogene GASC1 demethylates tri- and dimethylated lysine 9 on histone H3. Nature 2006, 442(7100):307-311.
  • [10]Bannister AJ, Schneider R, Myers FA, Thorne AW, Crane-Robinson C, Kouzarides T: Spatial distribution of di- and tri-methyl lysine 36 of histone H3 at active genes. J Biol Chem 2005, 280(18):17732-17736.
  • [11]Bannister AJ, Zegerman P, Partridge JF, Miska EA, Thomas JO, Allshire RC, Kouzarides T: Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001, 410(6824):120-124.
  • [12]Yang ZQ, Imoto I, Fukuda Y, Pimkhaokham A, Shimada Y, Imamura M, Sugano S, Nakamura Y, Inazawa J: Identification of a novel gene, GASC1, within an amplicon at 9p23-24 frequently detected in esophageal cancer cell lines. Cancer Res 2000, 60(17):4735-4739.
  • [13]Liu G, Bollig-Fischer A, Kreike B, van de Vijver MJ, Abrams J, Ethier SP, Yang ZQ: Genomic amplification and oncogenic properties of the GASC1 histone demethylase gene in breast cancer. Oncogene 2009, 28(50):4491-4500.
  • [14]Rui L, Emre NC, Kruhlak MJ, Chung HJ, Steidl C, Slack G, Wright GW, Lenz G, Ngo VN, Shaffer AL, et al.: Cooperative epigenetic modulation by cancer amplicon genes. Cancer Cell 2010, 18(6):590-605.
  • [15]Wu J, Liu S, Liu G, Dombkowski A, Abrams J, Martin-Trevino R, Wicha MS, Ethier SP, Yang ZQ: Identification and functional analysis of 9p24 amplified genes in human breast cancer. Oncogene 2012, 31(3):333-341.
  • [16]Wissmann M, Yin N, Muller JM, Greschik H, Fodor BD, Jenuwein T, Vogler C, Schneider R, Gunther T, Buettner R, et al.: Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat Cell Biol 2007, 9(3):347-353.
  • [17]Loh YH, Zhang W, Chen X, George J, Ng HH: Jmjd1a and Jmjd2c histone H3 Lys 9 demethylases regulate self-renewal in embryonic stem cells. Genes Dev 2007, 21(20):2545-2557.
  • [18]Katoh Y, Katoh M: Comparative integromics on JMJD2A, JMJD2B and JMJD2C: preferential expression of JMJD2C in undifferentiated ES cells. Int J Mol Med 2007, 20(2):269-273.
  • [19]Kauppinen JM, Kosma VM, Soini Y, Sironen R, Nissinen M, Nykopp TK, Karja V, Eskelinen M, Kataja V, Mannermaa A: ST14 gene variant and decreased matriptase protein expression predict poor breast cancer survival. Cancer Epidemiol Biomarkers Prev 2010, 19(9):2133-2142.
  • [20]Pellikainen MJ, Pekola TT, Ropponen KM, Kataja VV, Kellokoski JK, Eskelinen MJ, Kosma VM: p21WAF1 expression in invasive breast cancer and its association with p53, AP-2, cell proliferation, and prognosis. J Clin Pathol 2003, 56(3):214-220.
  • [21]Hartikainen JM, Tuhkanen H, Kataja V, Dunning AM, Antoniou A, Smith P, Arffman A, Pirskanen M, Easton DF, Eskelinen M, et al.: An autosome-wide scan for linkage disequilibrium-based association in sporadic breast cancer cases in eastern Finland: three candidate regions found. Cancer Epidemiol Biomarkers Prev 2005, 14(1):75-80.
  • [22]Soini Y, Tuhkanen H, Sironen R, Virtanen I, Kataja V, Auvinen P, Mannermaa A, Kosma VM: Transcription factors zeb1, twist and snai1 in breast carcinoma. BMC Cancer 2011, 11:73. BioMed Central Full Text
  • [23]Cancer TIAfRo: Pathology and Genetics of Tumours of the Breast and Female Genital Organs. In IARC WHO Classification of Tumours. Edited by Tavassoéli FA, Devilee P. Lyon, France: IARCPress-WHO; 2003:432.
  • [24]McNeill RE, Miller N, Kerin MJ: Evaluation and validation of candidate endogenous control genes for real-time quantitative PCR studies of breast cancer. BMC Mol Biol 2007, 8:107. BioMed Central Full Text
  • [25]Chen Y, Guo Y, Ge X, Itoh H, Watanabe A, Fujiwara T, Kodama T, Aburatani H: Elevated expression and potential roles of human Sp5, a member of Sp transcription factor family, in human cancers. Biochem Biophys Res Commun 2006, 340(3):758-766.
  • [26]Takahashi M, Nakamura Y, Obama K, Furukawa Y: Identification of SP5 as a downstream gene of the beta-catenin/Tcf pathway and its enhanced expression in human colon cancer. Int J Oncol 2005, 27(6):1483-1487.
  • [27]Khau T, Langenbach SY, Schuliga M, Harris T, Johnstone CN, Anderson RL, Stewart AG: Annexin-1 signals mitogen-stimulated breast tumor cell proliferation by activation of the formyl peptide receptors (FPRs) 1 and 2. FASEB J 2011, 25(2):483-496.
  • [28]Yom CK, Han W, Kim SW, Kim HS, Shin HC, Chang JN, Koo M, Noh DY, Moon BI: Clinical significance of annexin A1 expression in breast cancer. J Breast Cancer 2011, 14(4):262-268.
  • [29]Gebeshuber CA, Martinez J: miR-100 suppresses IGF2 and inhibits breast tumorigenesis by interfering with proliferation and survival signaling. Oncogene 2012.
  • [30]Yang F, Bi J, Xue X, Zheng L, Zhi K, Hua J, Fang G: Up-regulated long non-coding RNA H19 contributes to proliferation of gastric cancer cells. FEBS J 2012, 279(17):3159-3165.
  • [31]Amit D, Hochberg A: Development of targeted therapy for a broad spectrum of cancers (pancreatic cancer, ovarian cancer, glioblastoma and HCC) mediated by a double promoter plasmid expressing diphtheria toxin under the control of H19 and IGF2-P4 regulatory sequences. Int J Clin Exp Med 2012, 5(4):296-305.
  • [32]Qiu J, Yang R, Rao Y, Du Y, Kalembo FW: Risk factors for breast cancer and expression of insulin-like growth factor-2 (IGF-2) in women with breast cancer in Wuhan City. China. PLoS One 2012, 7(5):e36497.
  • [33]Qiao Y, Jiang X, Lee ST, Karuturi RK, Hooi SC, Yu Q: FOXQ1 regulates epithelial-mesenchymal transition in human cancers. Cancer Res 2011, 71(8):3076-3086.
  • [34]Zhang H, Meng F, Liu G, Zhang B, Zhu J, Wu F, Ethier SP, Miller F, Wu G: Forkhead transcription factor foxq1 promotes epithelial-mesenchymal transition and breast cancer metastasis. Cancer Res 2011, 71(4):1292-1301.
  • [35]Whetstine JR, Nottke A, Lan F, Huarte M, Smolikov S, Chen Z, Spooner E, Li E, Zhang G, Colaiacovo M, et al.: Reversal of histone lysine trimethylation by the JMJD2 family of histone demethylases. Cell 2006, 125(3):467-481.
  • [36]Hoffmann I, Roatsch M, Schmitt ML, Carlino L, Pippel M, Sippl W, Jung M: The role of histone demethylases in cancer therapy. Mol Oncol 2012.
  • [37]Shi Y, Whetstine JR: Dynamic regulation of histone lysine methylation by demethylases. Mol Cell 2007, 25(1):1-14.
  • [38]Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell 2007, 129(4):823-837.
  • [39]Peters AH, Kubicek S, Mechtler K, O’Sullivan RJ, Derijck AA, Perez-Burgos L, Kohlmaier A, Opravil S, Tachibana M, Shinkai Y, et al.: Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol Cell 2003, 12(6):1577-1589.
  • [40]De Koning L, Savignoni A, Boumendil C, Rehman H, Asselain B, Sastre-Garau X, Almouzni G: Heterochromatin protein 1alpha: a hallmark of cell proliferation relevant to clinical oncology. EMBO Mol Med 2009, 1(3):178-191.
  • [41]Dong C, Wu Y, Wang Y, Wang C, Kang T, Rychahou PG, Chi YI, Evers BM, Zhou BP: Interaction with Suv39H1 is critical for Snail-mediated E-cadherin repression in breast cancer. Oncogene 2012.
  • [42]Tang D, Xu S, Zhang Q, Zhao W: The expression and clinical significance of the androgen receptor and E-cadherin in triple-negative breast cancer. Med Oncol 2012, 29(2):526-33.
  • [43]Collins LC, Cole KS, Marotti JD, Hu R, Schnitt SJ, Tamimi RM: Androgen receptor expression in breast cancer in relation to molecular phenotype: results from the Nurses’ Health Study. Mod Pathol 2011, 24(7):924-931.
  • [44]Hu R, Dawood S, Holmes MD, Collins LC, Schnitt SJ, Cole K, Marotti JD, Hankinson SE, Colditz GA, Tamimi RM: Androgen receptor expression and breast cancer survival in postmenopausal women. Clin Cancer Res 2011, 17(7):1867-1874.
  • [45]Niemeier LA, Dabbs DJ, Beriwal S, Striebel JM, Bhargava R: Androgen receptor in breast cancer: expression in estrogen receptor-positive tumors and in estrogen receptor-negative tumors with apocrine differentiation. Mod Pathol 2010, 23(2):205-212.
  • [46]Wang Y, Romigh T, He X, Tan MH, Orloff MS, Silverman RH, Heston WD, Eng C: Differential regulation of PTEN expression by androgen receptor in prostate and breast cancers. Oncogene 2011, 30(42):4327-4338.
  • [47]Dontu G, Al-Hajj M, Abdallah WM, Clarke MF, Wicha MS: Stem cells in normal breast development and breast cancer. Cell Prolif 2003, 36(Suppl 1):59-72.
  • [48]Lobry C, Oh P, Aifantis I: Oncogenic and tumor suppressor functions of Notch in cancer: it’s NOTCH what you think. J Exp Med 2011, 208(10):1931-1935.
  • [49]Dumont AG, Yang Y, Reynoso D, Katz D, Trent JC, Hughes DP: Anti-tumor effects of the Notch pathway in gastrointestinal stromal tumors. Carcinogenesis 2012, 33(9):1674-1683.
  • [50]Finak G, Bertos N, Pepin F, Sadekova S, Souleimanova M, Zhao H, Chen H, Omeroglu G, Meterissian S, Omeroglu A, et al.: Stromal gene expression predicts clinical outcome in breast cancer. Nat Med 2008, 14(5):518-527.
  • [51]Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, van de Vijver MJ: Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 2007, 9(5):R65. BioMed Central Full Text
  文献评价指标  
  下载次数:73次 浏览次数:15次