期刊论文详细信息
EPJ Data Science
Detecting political biases of named entities and hashtags on Twitter
Regular Article
Yizhou Sun1  Yining Wang1  Zhiping Xiao1  Wen Hong Lam1  Jeffrey Zhu1  Mason A. Porter2  Pei Zhou3 
[1] Department of Computer Science, University of California, Los Angeles, 580 Portola Plaza, 90095, Los Angeles, California, United States of America;Department of Mathematics, University California, Los Angeles, 520 Portola Plaza, 90095, Los Angeles, California, United States of America;Santa Fe Institute, 1399 Hyde Park Road, 87501, Santa Fe, New Mexico, United States of America;Information Sciences Institute, University of Southern California, Marina del Rey, 90292, Los Angeles, California, United States of America;
关键词: Political-polarity detection;    Word embeddings;    Multi-task learning;    Adversarial training;    Data sets;   
DOI  :  10.1140/epjds/s13688-023-00386-6
 received in 2022-09-19, accepted in 2023-03-31,  发布年份 2023
来源: Springer
PDF
【 摘 要 】

Ideological divisions in the United States have become increasingly prominent in daily communication. Accordingly, there has been much research on political polarization, including many recent efforts that take a computational perspective. By detecting political biases in a text document, one can attempt to discern and describe its polarity. Intuitively, the named entities (i.e., the nouns and the phrases that act as nouns) and hashtags in text often carry information about political views. For example, people who use the term “pro-choice” are likely to be liberal and people who use the term “pro-life” are likely to be conservative. In this paper, we seek to reveal political polarities in social-media text data and to quantify these polarities by explicitly assigning a polarity score to entities and hashtags. Although this idea is straightforward, it is difficult to perform such inference in a trustworthy quantitative way. Key challenges include the small number of known labels, the continuous spectrum of political views, and the preservation of both a polarity score and a polarity-neutral semantic meaning in an embedding vector of words. To attempt to overcome these challenges, we propose the Polarity-aware Embedding Multi-task learning (PEM) model. This model consists of (1) a self-supervised context-preservation task, (2) an attention-based tweet-level polarity-inference task, and (3) an adversarial learning task that promotes independence between an embedding’s polarity component and its semantic component. Our experimental results demonstrate that our PEM model can successfully learn polarity-aware embeddings that perform well at tweet-level and account-level classification tasks. We examine a variety of applications—including a study of spatial and temporal distributions of polarities and a comparison between tweets from Twitter and posts from Parler—and we thereby demonstrate the effectiveness of our PEM model. We also discuss important limitations of our work and encourage caution when applying the PEM model to real-world scenarios.

【 授权许可】

CC BY   
© The Author(s) 2023

【 预 览 】
附件列表
Files Size Format View
RO202309075467664ZK.pdf 3236KB PDF download
40517_2023_252_Article_IEq8.gif 1KB Image download
13690_2023_1130_Article_IEq62.gif 1KB Image download
Fig. 5 497KB Image download
Fig. 6 1845KB Image download
Fig. 2 405KB Image download
Fig. 3 283KB Image download
MediaObjects/13046_2023_2710_MOESM5_ESM.xlsx 11KB Other download
Fig. 4 421KB Image download
MediaObjects/13046_2023_2710_MOESM8_ESM.pdf 1032KB PDF download
Fig. 5 161KB Image download
Fig. 3 455KB Image download
12888_2023_4863_Article_IEq1.gif 1KB Image download
Fig. 7 421KB Image download
Fig. 7 112KB Image download
Fig. 1 496KB Image download
Fig. 8 434KB Image download
Fig. 8 133KB Image download
MediaObjects/12902_2023_1368_MOESM5_ESM.tif 822KB Other download
MediaObjects/40360_2023_664_MOESM1_ESM.docx 126KB Other download
Fig. 9 152KB Image download
MediaObjects/40360_2023_664_MOESM2_ESM.docx 103KB Other download
MediaObjects/13046_2023_2710_MOESM11_ESM.pdf 375KB PDF download
Fig. 10 201KB Image download
Fig. 1 1650KB Image download
MediaObjects/40360_2023_664_MOESM4_ESM.docx 2341KB Other download
Fig. 11 64KB Image download
MediaObjects/12902_2023_1368_MOESM6_ESM.tif 1255KB Other download
Fig. 12 483KB Image download
Fig. 1 1352KB Image download
MediaObjects/12944_2023_1849_MOESM4_ESM.jpg 171KB Other download
Fig. 8 4055KB Image download
Fig. 3 830KB Image download
MediaObjects/12944_2023_1849_MOESM5_ESM.jpg 163KB Other download
Fig. 1 149KB Image download
Fig. 1 2462KB Image download
Fig. 8 348KB Image download
MediaObjects/13046_2023_2710_MOESM13_ESM.pdf 626KB PDF download
Fig. 13 799KB Image download
MediaObjects/13068_2023_2285_MOESM3_ESM.docx 16KB Other download
MediaObjects/12951_2023_1959_MOESM8_ESM.tif 5142KB Other download
MediaObjects/40798_2023_591_MOESM2_ESM.docx 23KB Other download
MediaObjects/40798_2023_591_MOESM3_ESM.docx 26KB Other download
MediaObjects/40360_2023_664_MOESM5_ESM.docx 94KB Other download
MediaObjects/40798_2023_591_MOESM5_ESM.docx 54KB Other download
MediaObjects/40360_2023_664_MOESM6_ESM.docx 95KB Other download
Fig. 1 228KB Image download
Fig. 2 1053KB Image download
Fig. 4 1761KB Image download
Fig. 2 302KB Image download
Fig. 1 818KB Image download
Fig. 3 968KB Image download
12936_2023_4634_Article_IEq2.gif 1KB Image download
MediaObjects/12888_2023_4879_MOESM1_ESM.doc 416KB Other download
MediaObjects/12902_2023_1381_MOESM1_ESM.docx 16KB Other download
12936_2023_4634_Article_IEq5.gif 1KB Image download
Fig. 2 576KB Image download
Fig. 9 314KB Image download
MediaObjects/13041_2023_1031_MOESM1_ESM.pdf 1442KB PDF download
MediaObjects/40360_2023_664_MOESM8_ESM.docx 12KB Other download
Fig. 3 1818KB Image download
Fig. 16 74KB Image download
Fig. 10 230KB Image download
MediaObjects/13046_2019_1433_MOESM2_ESM.docx 23KB Other download
Fig. 17 113KB Image download
Fig. 11 608KB Image download
MediaObjects/12974_2023_2827_MOESM2_ESM.docx 19KB Other download
Fig. 1 77KB Image download
Fig. 2 847KB Image download
Fig. 1 46KB Image download
MediaObjects/12974_2023_2827_MOESM4_ESM.xlsx 766KB Other download
Fig. 4 239KB Image download
MediaObjects/12864_2023_9442_MOESM6_ESM.xlsx 21KB Other download
MediaObjects/12302_2023_752_MOESM2_ESM.docx 14KB Other download
Fig. 4 557KB Image download
Fig. 4 1703KB Image download
Fig. 3 2035KB Image download
Fig. 3 5721KB Image download
MediaObjects/12888_2023_4901_MOESM1_ESM.docx 29KB Other download
40854_2023_491_Article_IEq4.gif 1KB Image download
MediaObjects/12888_2023_4901_MOESM2_ESM.docx 19KB Other download
Fig. 5 1522KB Image download
MediaObjects/12888_2023_4948_MOESM1_ESM.doc 123KB Other download
Fig. 2 1546KB Image download
MediaObjects/12951_2023_1959_MOESM9_ESM.xlsx 5470KB Other download
Fig. 20 174KB Image download
Fig. 5 607KB Image download
Fig. 1 3195KB Image download
40854_2023_491_Article_IEq12.gif 1KB Image download
Fig. 21 243KB Image download
Fig. 2 183KB Image download
MediaObjects/12864_2023_9442_MOESM9_ESM.docx 88KB Other download
40854_2023_491_Article_IEq17.gif 1KB Image download
Fig. 4 1111KB Image download
Fig. 22 143KB Image download
Fig. 1 313KB Image download
Fig. 6 2496KB Image download
MediaObjects/12888_2023_4948_MOESM2_ESM.pdf 69KB PDF download
Fig. 1 736KB Image download
Scheme 1 2213KB Image download
Fig. 5 581KB Image download
MediaObjects/13041_2023_1045_MOESM3_ESM.docx 438KB Other download
Fig. 6 101KB Image download
Fig. 5 269KB Image download
Fig. 4 1282KB Image download
Fig. 1 326KB Image download
Fig. 12 2718KB Image download
Fig. 6 2937KB Image download
Fig. 1 51KB Image download
Fig. 3 99KB Image download
Fig. 1 183KB Image download
Fig. 4 1387KB Image download
Fig. 2 3797KB Image download
MediaObjects/12864_2023_9442_MOESM13_ESM.xlsx 179KB Other download
Fig. 7 783KB Image download
Fig. 24 514KB Image download
Fig. 2 1719KB Image download
Fig. 6 479KB Image download
MediaObjects/41408_2023_874_MOESM1_ESM.docx 167KB Other download
Fig. 1 616KB Image download
Fig. 1 181KB Image download
MediaObjects/12888_2023_4917_MOESM1_ESM.docx 859KB Other download
41116_2023_37_Article_IEq1.gif 1KB Image download
MediaObjects/12951_2023_1944_MOESM6_ESM.tif 8002KB Other download
41116_2023_37_Article_IEq2.gif 1KB Image download
41116_2023_37_Article_IEq3.gif 1KB Image download
41116_2023_37_Article_IEq4.gif 1KB Image download
MediaObjects/12888_2023_4944_MOESM1_ESM.docx 50KB Other download
41116_2023_37_Article_IEq6.gif 1KB Image download
41116_2023_37_Article_IEq7.gif 1KB Image download
MediaObjects/12888_2023_4917_MOESM2_ESM.docx 1739KB Other download
41116_2023_37_Article_IEq9.gif 1KB Image download
MediaObjects/12888_2023_4950_MOESM1_ESM.docx 32KB Other download
41116_2023_37_Article_IEq10.gif 1KB Image download
Fig. 2 116KB Image download
41116_2023_37_Article_IEq12.gif 1KB Image download
Fig. 1 41KB Image download
41116_2023_37_Article_IEq13.gif 1KB Image download
MediaObjects/12888_2023_4936_MOESM1_ESM.docx 20KB Other download
41116_2023_37_Article_IEq14.gif 1KB Image download
Fig. 1 120KB Image download
Fig. 1 185KB Image download
Fig. 1 199KB Image download
Fig. 3 3125KB Image download
MediaObjects/13011_2023_539_MOESM1_ESM.docx 29KB Other download
【 图 表 】

Fig. 3

Fig. 1

Fig. 1

Fig. 1

41116_2023_37_Article_IEq14.gif

41116_2023_37_Article_IEq13.gif

Fig. 1

41116_2023_37_Article_IEq12.gif

Fig. 2

41116_2023_37_Article_IEq10.gif

41116_2023_37_Article_IEq9.gif

41116_2023_37_Article_IEq7.gif

41116_2023_37_Article_IEq6.gif

41116_2023_37_Article_IEq4.gif

41116_2023_37_Article_IEq3.gif

41116_2023_37_Article_IEq2.gif

41116_2023_37_Article_IEq1.gif

Fig. 1

Fig. 1

Fig. 6

Fig. 2

Fig. 24

Fig. 7

Fig. 2

Fig. 4

Fig. 1

Fig. 3

Fig. 1

Fig. 6

Fig. 12

Fig. 1

Fig. 4

Fig. 5

Fig. 6

Fig. 5

Scheme 1

Fig. 1

Fig. 6

Fig. 1

Fig. 22

Fig. 4

40854_2023_491_Article_IEq17.gif

Fig. 2

Fig. 21

40854_2023_491_Article_IEq12.gif

Fig. 1

Fig. 5

Fig. 20

Fig. 2

Fig. 5

40854_2023_491_Article_IEq4.gif

Fig. 3

Fig. 3

Fig. 4

Fig. 4

Fig. 4

Fig. 1

Fig. 2

Fig. 1

Fig. 11

Fig. 17

Fig. 10

Fig. 16

Fig. 3

Fig. 9

Fig. 2

12936_2023_4634_Article_IEq5.gif

12936_2023_4634_Article_IEq2.gif

Fig. 3

Fig. 1

Fig. 2

Fig. 4

Fig. 2

Fig. 1

Fig. 13

Fig. 8

Fig. 1

Fig. 1

Fig. 3

Fig. 8

Fig. 1

Fig. 12

Fig. 11

Fig. 1

Fig. 10

Fig. 9

Fig. 8

Fig. 8

Fig. 1

Fig. 7

Fig. 7

12888_2023_4863_Article_IEq1.gif

Fig. 3

Fig. 5

Fig. 4

Fig. 3

Fig. 2

Fig. 6

Fig. 5

13690_2023_1130_Article_IEq62.gif

40517_2023_252_Article_IEq8.gif

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  文献评价指标  
  下载次数:1次 浏览次数:0次