期刊论文详细信息
PeerJ
Using bioinformatics and metabolomics to identify altered granulosa cells in patients with diminished ovarian reserve
article
Ruifen He1  Zhongying Zhao1  Yongxiu Yang2  Xiaolei Liang2 
[1] The First Clinical Medical College of Lanzhou University;Department of Obstetrics and Gynecology, The First Hospital of Lanzhou University, Key Laboratory for Gynecologic Oncology Gansu Province
关键词: Diminished ovarian reserve;    Bioinformatics analysis;    Steroid;    Inflammation;    Metabolomics;   
DOI  :  10.7717/peerj.9812
学科分类:社会科学、人文和艺术(综合)
来源: Inra
PDF
【 摘 要 】

BackgroundDuring fertility treatment, diminished ovarian reserve (DOR) is a challenge that can seriously affect a patient’s reproductive potential. However, the pathogenesis of DOR is still unclear and its treatment options are limited. This study aimed to explore DOR’s molecular mechanisms.MethodsWe used R software to analyze the mRNA microarray dataset E-MTAB-391 downloaded from ArrayExpress, screen for differentially expressed genes (DEGs), and perform functional enrichment analyses. We also constructed the protein-protein interaction (PPI) and miRNA-mRNA networks. Ovarian granulosa cells (GCs) from women with DOR and the control group were collected to perform untargeted metabolomics analyses. Additionally, small molecule drugs were identified using the Connectivity Map database.ResultsWe ultimately identified 138 DEGs. Our gene ontology (GO) analysis indicated that DEGs were mainly enriched in cytokine and steroid biosynthetic processes. According to the Kyoto Encyclopedia of Genes and Genomes (KEGG), the DEGs were mainly enriched in the AGE (advanced glycation end-product)-RAGE (receptor for AGE) signaling pathway in diabetic complications and steroid biosynthesis. In the PPI network, we determined that JUN, EGR1, HMGCR, ATF3, and SQLE were hub genes that may be involved in steroid biosynthesis and inflammation. miRNAs also played a role in DOR development by regulating target genes. We validated the differences in steroid metabolism across GCs using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We selected 31 small molecules with potentially positive or negative influences on DOR development.ConclusionWe found that steroidogenesis and inflammation played critical roles in DOR development, and our results provide promising insights for predicting and treating DOR.

【 授权许可】

CC BY   

【 预 览 】
附件列表
Files Size Format View
RO202307100007630ZK.pdf 4640KB PDF download
  文献评价指标  
  下载次数:1次 浏览次数:0次