| EPJ Data Science | |
| Learning to cluster urban areas: two competitive approaches and an empirical validation | |
| Regular Article | |
| Gabriel Cuchacovic1  Axel Reyes2  Jan Dimter3  Hernán Valdivieso3  Marcelo Mendoza4  Camila Vera4  Hans Löbel5  Nicolás Alvarado6  Francesca Lucchini6  Felipe Gutiérrez6  Naim Bro7  Sergio Toro8  | |
| [1] Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Department of Informatics, Universidad Técnica Federico Santa María, Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;National Center of Artificial Intelligence, Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;National Center of Artificial Intelligence, Santiago, Chile;Department of Transport Engineering and Logistics, Pontificia Universidad Católica de Chile, Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;National Center of Artificial Intelligence, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;Faculty of Government, Universidad Adolfo Ibáñez, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;Public Administration and Political Science, Universidad de Concepción, Concepción, Chile;School of Government, Universidad Mayor, Santiago, Chile; | |
| 关键词: Urban clustering; Graph Neural Networks; Gaussian Mixture Models; | |
| DOI : 10.1140/epjds/s13688-022-00374-2 | |
| received in 2022-07-12, accepted in 2022-12-05, 发布年份 2022 | |
| 来源: Springer | |
PDF
|
|
【 摘 要 】
Urban clustering detects geographical units that are internally homogeneous and distinct from their surroundings. It has applications in urban planning, but few studies compare the effectiveness of different methods. We study two techniques that represent two families of urban clustering algorithms: Gaussian Mixture Models (GMMs), which operate on spatially distributed data, and Deep Modularity Networks (DMONs), which work on attributed graphs of proximal nodes. To explore the strengths and limitations of these techniques, we studied their parametric sensitivity under different conditions, considering the spatial resolution, granularity of representation, and the number of descriptive attributes, among other relevant factors. To validate the methods, we asked residents of Santiago, Chile, to respond to a survey comparing city clustering solutions produced using the different methods. Our study shows that DMON is slightly preferred over GMM and that social features seem to be the most important ones to cluster urban areas.
【 授权许可】
CC BY
© The Author(s) 2022
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| RO202305068026393ZK.pdf | 10088KB | ||
| MediaObjects/40560_2022_644_MOESM4_ESM.docx | 26KB | Other | |
| Fig. 4 | 1167KB | Image | |
| 12888_2022_4322_Article_IEq8.gif | 1KB | Image | |
| Fig. 2 | 747KB | Image | |
| Fig. 3 | 133KB | Image | |
| 12982_2022_119_Article_IEq23.gif | 1KB | Image | |
| Fig. 1 | 101KB | Image | |
| 12982_2022_119_Article_IEq26.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq27.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq28.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq207.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq208.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq210.gif | 1KB | Image | |
| Fig. 2 | 104KB | Image | |
| Fig. 3 | 81KB | Image | |
| 12982_2022_119_Article_IEq214.gif | 1KB | Image | |
| MediaObjects/12888_2022_4385_MOESM1_ESM.pdf | 135KB | ||
| 12982_2022_119_Article_IEq216.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq218.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq219.gif | 1KB | Image | |
| MediaObjects/12888_2022_4351_MOESM1_ESM.pdf | 127KB | ||
| 12982_2022_119_Article_IEq221.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq75.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq76.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq77.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq78.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq80.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq81.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq82.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq83.gif | 1KB | Image | |
| 12982_2022_119_Article_IEq84.gif | 1KB | Image | |
| Fig. 2 | 155KB | Image | |
| MediaObjects/13011_2022_502_MOESM1_ESM.docx | 52KB | Other | |
| 41408_2022_765_Article_IEq1.gif | 1KB | Image | |
| 12888_2022_4482_Article_IEq1.gif | 1KB | Image | |
| 12888_2022_4482_Article_IEq2.gif | 1KB | Image | |
| 12888_2022_4482_Article_IEq3.gif | 1KB | Image | |
| MediaObjects/13100_2022_287_MOESM10_ESM.tif | 3204KB | Other | |
| Fig. 1 | 2758KB | Image | |
| Fig. 2 | 2610KB | Image | |
| Fig. 4 | 268KB | Image | |
| Fig. 4 | 2862KB | Image | |
| Fig. 1 | 216KB | Image | |
| Fig. 5 | 171KB | Image | |
| MediaObjects/40360_2022_637_MOESM1_ESM.docx | 27KB | Other | |
| Fig. 6 | 240KB | Image | |
| MediaObjects/40360_2022_637_MOESM2_ESM.docx | 36KB | Other | |
| MediaObjects/40360_2022_637_MOESM3_ESM.docx | 18KB | Other | |
| Fig. 2 | 181KB | Image | |
| MediaObjects/40360_2022_637_MOESM5_ESM.docx | 22KB | Other | |
| Fig. 2 | 1090KB | Image | |
| Fig. 3 | 174KB | Image | |
| Fig. 4 | 2249KB | Image | |
| Fig. 10 | 174KB | Image |
【 图 表 】
Fig. 10
Fig. 4
Fig. 3
Fig. 2
Fig. 2
Fig. 6
Fig. 5
Fig. 1
Fig. 4
Fig. 4
Fig. 2
Fig. 1
12888_2022_4482_Article_IEq3.gif
12888_2022_4482_Article_IEq2.gif
12888_2022_4482_Article_IEq1.gif
41408_2022_765_Article_IEq1.gif
Fig. 2
12982_2022_119_Article_IEq84.gif
12982_2022_119_Article_IEq83.gif
12982_2022_119_Article_IEq82.gif
12982_2022_119_Article_IEq81.gif
12982_2022_119_Article_IEq80.gif
12982_2022_119_Article_IEq78.gif
12982_2022_119_Article_IEq77.gif
12982_2022_119_Article_IEq76.gif
12982_2022_119_Article_IEq75.gif
12982_2022_119_Article_IEq221.gif
12982_2022_119_Article_IEq219.gif
12982_2022_119_Article_IEq218.gif
12982_2022_119_Article_IEq216.gif
12982_2022_119_Article_IEq214.gif
Fig. 3
Fig. 2
12982_2022_119_Article_IEq210.gif
12982_2022_119_Article_IEq208.gif
12982_2022_119_Article_IEq207.gif
12982_2022_119_Article_IEq28.gif
12982_2022_119_Article_IEq27.gif
12982_2022_119_Article_IEq26.gif
Fig. 1
12982_2022_119_Article_IEq23.gif
Fig. 3
Fig. 2
12888_2022_4322_Article_IEq8.gif
Fig. 4
【 参考文献 】
- [1]
- [2]
- [3]
- [4]
- [5]
- [6]
- [7]
- [8]
- [9]
- [10]
- [11]
- [12]
- [13]
- [14]
- [15]
- [16]
- [17]
- [18]
PDF