期刊论文详细信息
EPJ Data Science
Learning to cluster urban areas: two competitive approaches and an empirical validation
Regular Article
Gabriel Cuchacovic1  Axel Reyes2  Jan Dimter3  Hernán Valdivieso3  Marcelo Mendoza4  Camila Vera4  Hans Löbel5  Nicolás Alvarado6  Francesca Lucchini6  Felipe Gutiérrez6  Naim Bro7  Sergio Toro8 
[1] Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Department of Informatics, Universidad Técnica Federico Santa María, Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;National Center of Artificial Intelligence, Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;National Center of Artificial Intelligence, Santiago, Chile;Department of Transport Engineering and Logistics, Pontificia Universidad Católica de Chile, Santiago, Chile;Department of Computer Science, Pontificia Universidad Católica de Chile, Santiago, Chile;National Center of Artificial Intelligence, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;Faculty of Government, Universidad Adolfo Ibáñez, Santiago, Chile;Millennium Institute for Foundational Research on Data (IMFD), Santiago, Chile;Public Administration and Political Science, Universidad de Concepción, Concepción, Chile;School of Government, Universidad Mayor, Santiago, Chile;
关键词: Urban clustering;    Graph Neural Networks;    Gaussian Mixture Models;   
DOI  :  10.1140/epjds/s13688-022-00374-2
 received in 2022-07-12, accepted in 2022-12-05,  发布年份 2022
来源: Springer
PDF
【 摘 要 】

Urban clustering detects geographical units that are internally homogeneous and distinct from their surroundings. It has applications in urban planning, but few studies compare the effectiveness of different methods. We study two techniques that represent two families of urban clustering algorithms: Gaussian Mixture Models (GMMs), which operate on spatially distributed data, and Deep Modularity Networks (DMONs), which work on attributed graphs of proximal nodes. To explore the strengths and limitations of these techniques, we studied their parametric sensitivity under different conditions, considering the spatial resolution, granularity of representation, and the number of descriptive attributes, among other relevant factors. To validate the methods, we asked residents of Santiago, Chile, to respond to a survey comparing city clustering solutions produced using the different methods. Our study shows that DMON is slightly preferred over GMM and that social features seem to be the most important ones to cluster urban areas.

【 授权许可】

CC BY   
© The Author(s) 2022

【 预 览 】
附件列表
Files Size Format View
RO202305068026393ZK.pdf 10088KB PDF download
MediaObjects/40560_2022_644_MOESM4_ESM.docx 26KB Other download
Fig. 4 1167KB Image download
12888_2022_4322_Article_IEq8.gif 1KB Image download
Fig. 2 747KB Image download
Fig. 3 133KB Image download
12982_2022_119_Article_IEq23.gif 1KB Image download
Fig. 1 101KB Image download
12982_2022_119_Article_IEq26.gif 1KB Image download
12982_2022_119_Article_IEq27.gif 1KB Image download
12982_2022_119_Article_IEq28.gif 1KB Image download
12982_2022_119_Article_IEq207.gif 1KB Image download
12982_2022_119_Article_IEq208.gif 1KB Image download
12982_2022_119_Article_IEq210.gif 1KB Image download
Fig. 2 104KB Image download
Fig. 3 81KB Image download
12982_2022_119_Article_IEq214.gif 1KB Image download
MediaObjects/12888_2022_4385_MOESM1_ESM.pdf 135KB PDF download
12982_2022_119_Article_IEq216.gif 1KB Image download
12982_2022_119_Article_IEq218.gif 1KB Image download
12982_2022_119_Article_IEq219.gif 1KB Image download
MediaObjects/12888_2022_4351_MOESM1_ESM.pdf 127KB PDF download
12982_2022_119_Article_IEq221.gif 1KB Image download
12982_2022_119_Article_IEq75.gif 1KB Image download
12982_2022_119_Article_IEq76.gif 1KB Image download
12982_2022_119_Article_IEq77.gif 1KB Image download
12982_2022_119_Article_IEq78.gif 1KB Image download
12982_2022_119_Article_IEq80.gif 1KB Image download
12982_2022_119_Article_IEq81.gif 1KB Image download
12982_2022_119_Article_IEq82.gif 1KB Image download
12982_2022_119_Article_IEq83.gif 1KB Image download
12982_2022_119_Article_IEq84.gif 1KB Image download
Fig. 2 155KB Image download
MediaObjects/13011_2022_502_MOESM1_ESM.docx 52KB Other download
41408_2022_765_Article_IEq1.gif 1KB Image download
12888_2022_4482_Article_IEq1.gif 1KB Image download
12888_2022_4482_Article_IEq2.gif 1KB Image download
12888_2022_4482_Article_IEq3.gif 1KB Image download
MediaObjects/13100_2022_287_MOESM10_ESM.tif 3204KB Other download
Fig. 1 2758KB Image download
Fig. 2 2610KB Image download
Fig. 4 268KB Image download
Fig. 4 2862KB Image download
Fig. 1 216KB Image download
Fig. 5 171KB Image download
MediaObjects/40360_2022_637_MOESM1_ESM.docx 27KB Other download
Fig. 6 240KB Image download
MediaObjects/40360_2022_637_MOESM2_ESM.docx 36KB Other download
MediaObjects/40360_2022_637_MOESM3_ESM.docx 18KB Other download
Fig. 2 181KB Image download
MediaObjects/40360_2022_637_MOESM5_ESM.docx 22KB Other download
Fig. 2 1090KB Image download
Fig. 3 174KB Image download
Fig. 4 2249KB Image download
Fig. 10 174KB Image download
【 图 表 】

Fig. 10

Fig. 4

Fig. 3

Fig. 2

Fig. 2

Fig. 6

Fig. 5

Fig. 1

Fig. 4

Fig. 4

Fig. 2

Fig. 1

12888_2022_4482_Article_IEq3.gif

12888_2022_4482_Article_IEq2.gif

12888_2022_4482_Article_IEq1.gif

41408_2022_765_Article_IEq1.gif

Fig. 2

12982_2022_119_Article_IEq84.gif

12982_2022_119_Article_IEq83.gif

12982_2022_119_Article_IEq82.gif

12982_2022_119_Article_IEq81.gif

12982_2022_119_Article_IEq80.gif

12982_2022_119_Article_IEq78.gif

12982_2022_119_Article_IEq77.gif

12982_2022_119_Article_IEq76.gif

12982_2022_119_Article_IEq75.gif

12982_2022_119_Article_IEq221.gif

12982_2022_119_Article_IEq219.gif

12982_2022_119_Article_IEq218.gif

12982_2022_119_Article_IEq216.gif

12982_2022_119_Article_IEq214.gif

Fig. 3

Fig. 2

12982_2022_119_Article_IEq210.gif

12982_2022_119_Article_IEq208.gif

12982_2022_119_Article_IEq207.gif

12982_2022_119_Article_IEq28.gif

12982_2022_119_Article_IEq27.gif

12982_2022_119_Article_IEq26.gif

Fig. 1

12982_2022_119_Article_IEq23.gif

Fig. 3

Fig. 2

12888_2022_4322_Article_IEq8.gif

Fig. 4

【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  文献评价指标  
  下载次数:15次 浏览次数:3次