期刊论文详细信息
Cardiovascular Diabetology
Advanced glycation end-products decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells
Qin Wei1  Long Chen1  Liqun Ren2  Xiaomei Ren2  Hua Shao3  Naifeng Liu4 
[1] Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University;Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University;Department of Pharmacy, Zhongda Hospital, Southeast University;School of Medicine, Southeast University;
关键词: Advanced glycation end-products;    Endothelial nitric oxide synthase;    Oxidative stress;    Endothelial dysfunction;   
DOI  :  10.1186/s12933-017-0531-9
来源: DOAJ
【 摘 要 】

Abstract Background Advanced glycation end-products (AGEs) are elevated under diabetic conditions and associated with insulin resistance, endothelial dysfunction and vascular inflammation in humans. It has been demonstrated that AGEs evoke oxidative and inflammatory reactions in endothelial cells through the interaction with a receptor for AGEs (RAGE). Here, we aimed to identify the cellular mechanisms by which AGEs exacerbate the endothelial dysfunction in human coronary artery endothelial cells (HCAECs). Methods 30 type 2 diabetic patients with or without coronary artery atherosclerosis were recruited for this study. Plasma levels of AGE peptides (AGE-p) were analyzed using flow injection assay. Endothelial function was tested by brachial artery flow-mediated vasodilatation (FMD). Further investigations were performed to determine the effects and mechanisms of AGEs on endothelial dysfunction in HCAECs. Results AGE-p was inversely associated with FMD in diabetic patients with coronary artery atherosclerosis in our study. After treated with AGEs, HCAECs showed significant reductions of eNOS mRNA and protein levels including eNOS and phospho-eNOS Ser1177, eNOS mRNA stability, eNOS enzyme activity, and cellular nitric oxide (NO) levels, whereas superoxide anion production was significantly increased. In addition, AGEs significantly decreased mitochondrial membrane potential, ATP content and catalase and superoxyde dismutase (SOD) activities, whereas it increased NADPH oxidase activity. Treatment of the cells with antioxidants SeMet, SOD mimetic MnTBAP and mitochondrial inhibitor thenoyltrifluoroacetone (TTFA) effectively blocked these effects induced by AGEs. AGEs also increased phosphorylation of the mitogen-activated protein kinases p38 and ERK1/2, whereas the specific inhibitors of p38, ERK1/2, and TTFA effectively blocked AGEs-induced reactive oxygen species production and eNOS downregulation. Conclusions AGEs cause endothelial dysfunction by a mechanism associated with decreased eNOS expression and increased oxidative stress in HCAECs through activation of p38 and ERK1/2.

【 授权许可】

Unknown   

  文献评价指标  
  下载次数:0次 浏览次数:0次