Nanophotonics | |
Towards low energy consumption integrated photonic circuits based on Ge/SiGe quantum wells | |
article | |
Delphine Marris-Morini1  Laurent Vivien1  Papichaya Chaisakul1  Mohamed-Saïd Rouifed1  Jacopo Frigerio2  Daniel Chrastina2  Giovanni Isella2  Samson Edmond1  Xavier Le Roux1  Jean-René Coudevylle1  | |
[1] Institut d′Electronique Fondamentale;Dipartimento di Fisica del Politecnico di Milano | |
关键词: quantum wells; germanium; silicon; quantum confined stark effect; electroluminescence; epitaxial growth; | |
DOI : 10.1515/nanoph-2013-0018 | |
学科分类:社会科学、人文和艺术(综合) | |
来源: De Gruyter | |
【 摘 要 】
Despite being an indirect bandgap material, germanium (Ge) recently appeared as a material of choice for low power consumption optical link on silicon. Thanks to a low energy difference between direct and indirect energy bandgap, optical transitions around the direct gap can be used to achieve strong electroabsorption or photodetection in a material already used in microelectronics circuits. However, many challenges have to be addressed such as the growth of germanium-rich structures on silicon or the modeling of these structures around both direct and indirect bandgaps. This paper will explore recent achievements in Ge/SiGe quantum wells structures. Quantum confined Stark effect has been studied for different quantum well designs and light polarization. Both absorption and phase variations have been characterized and will be reported. Carrier recombination processes is also an intense research topic, in order to evaluate the competition between direct and indirect band gap emission as a function of temperature. Main results and conclusion will be introduced. Finally, high performance photonic devices (modulator and photodetector) that have already been demonstrated will be presented. At the end the challenges faced by Ge/SiGe QW as a new photonic platform will be presented.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107200003980ZK.pdf | 2553KB | download |