BMC Anesthesiology | |
Glycocalyx components affect platelet function, whole blood coagulation, and fibrinolysis: an in vitro study suggesting a link to trauma-induced coagulopathy | |
Laura Lümers1  Martin W. Britten1  Daniel Dirkmann1  Jürgen Peters1  Kenji Tominaga2  | |
[1] Klinik für Anästhesiologie & Intensivmedizin, University of Duisburg-Essen & University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany;Klinik für Anästhesiologie & Intensivmedizin, University of Duisburg-Essen & University Hospital of Essen, Hufelandstr. 55, 45122, Essen, Germany;Present Address: Department of Anesthesiology and Critical Care Medicine, Fukuoka University School of Medicine, Fukuoka, Japan; | |
关键词: Glycosaminoglycans; Shock; Syndecan-1; Thrombomodulin; Versicans; | |
DOI : 10.1186/s12871-021-01300-1 | |
来源: Springer | |
【 摘 要 】
BackgroundThe mechanisms of trauma induced coagulopathy (TIC) are considered multifactorial. Amongst others, however, shedding of the endothelial glycocalyx resulting in increased concentrations of glycocalyx fragments in plasma might also play a role. Thus, we hypothesized that shedded glycocalyx components affect coagulation and may act as humoral mediators of TIC.MethodsTo investigate effects of heparan sulfate, chondroitin sulfate, syndecan-1, versican, and thrombomodulin we added these fragments to in vitro assays of whole blood from healthy volunteers to yield concentrations observed in trauma patients. Platelet function, whole blood coagulation, and fibrinolysis were measured by standard coagulation tests, impedance aggregometry (IA), and viscoelastic tests (VET). To assess dose-response relationships, we performed IA with increasing concentrations of versican and VET with increasing concentrations of thrombomodulin.ResultsIntrinsically activated clotting times (i.e., activated partial thromboplastin time and intrinsically activated VET with and without heparinase) were unaffected by any glycocalyx fragment. Thrombomodulin, however, significantly and dose-dependently diminished fibrinolysis as assessed by VET with exogenously added rt-PA, and increased rt-PA-induced lysis Indices after 30 (up to 108% of control, p < 0,0001), 45 (up to 368% of control, p < 0,0001), and 60 min (up to 950% of control, p < 0,0001) in VET. Versican impaired platelet aggregation in response to arachidonic acid (up to − 37,6%, p < 0,0001), ADP (up to − 14,5%, p < 0,0001), and collagen (up to − 31,8%, p < 0,0001) in a dose-dependent manner, but did not affect TRAP-6 induced platelet aggregation. Clotting time in extrinsically activated VET was shortened by heparan sulfate (− 7,2%, p = 0,024), chondroitin sulfate (− 11,6%, p = 0,016), versican (− 13%, p = 0,012%), and when combined (− 7,2%, p = 0,007).ConclusionsGlycocalyx components exert distinct inhibitory effects on platelet function, coagulation, and fibrinolysis. These data do not support a ‘heparin-like auto-anticoagulation’ by shed glycosaminoglycans but suggest a possible role of versican in trauma-induced thrombocytopathy and of thrombomodulin in trauma-associated impairment of endogenous fibrinolysis.
【 授权许可】
CC BY
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
RO202107027932562ZK.pdf | 838KB | download |