学位论文详细信息
Biologically active assemblies that attenuate thrombosis on blood-contacting surfaces
Thrombomodulin;Medical devices;Thrombosis;Biomaterials;Blood compatibility
Qu, Zheng ; Chaikof, Elliot Biomedical Engineering Babensee, Julia Hanson, Stephen McIntire, Larry Taylor, W. Robert ; Chaikof, Elliot
University:Georgia Institute of Technology
Department:Biomedical Engineering
关键词: Thrombomodulin;    Medical devices;    Thrombosis;    Biomaterials;    Blood compatibility;   
Others  :  https://smartech.gatech.edu/bitstream/1853/50119/1/qu_zheng_201212_phd.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

All artificial organ systems and medical devices that operate in direct contact with blood elicit activation of coagulation and platelets, and their long-term use often necessitates antithrombotic therapies that carry significant cost and bleeding risk. Thrombomodulin (TM) is a major endogenous inhibitor of blood coagulation localized on the endothelial cell surface. The overall objective of this research is to develop clinically durable synthetic materials by incorporating TM as a solid-supported film to actively and sustainably attenuate thrombus formation at the blood-contacting interface. During the course of this research, we developed site-specific approaches to covalently attach TM on the luminal surface of commercial vascular grafts using bioorthogonal chemistry that was compatible with ethylene oxide sterilization. Notably, we demonstrated the superior efficacy of TM to reduce platelet deposition compared with commercial heparin modified grafts using a non-human primate model of acute graft thrombosis. Finally, we optimized a novel reversible chemistry to rapidly and repeatedly regenerate immobilized TM, with the potential to significantly extend the lifetime of biologically active films.

【 预 览 】
附件列表
Files Size Format View
Biologically active assemblies that attenuate thrombosis on blood-contacting surfaces 4732KB PDF download
  文献评价指标  
  下载次数:30次 浏览次数:17次