期刊论文详细信息
Molecular Neurodegeneration
Ceramide sphingolipid signaling mediates Tumor Necrosis Factor (TNF)-dependent toxicity via caspase signaling in dopaminergic neurons
Malú G Tansey1  Alfred H Merrill2  Sibali Bandyopadhyay2  Xi Chen1  Terina N Martinez3 
[1] Department of Physiology, Emory University School of Medicine, 615 Michael St., Atlanta, GA, 30322, USA;School of Biology and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, 315 Ferst Drive, Atlanta, GA, 30332-0363, USA;Department of Physiology, The University of Texas Southwestern Medical Center at Dallas, 6001 Forest Park Rd., Dallas, TX, 75390, USA
关键词: Akt;    Caspase;    ER stress;    Neurodegeneration;    Neuronal apoptosis;    Sphingolipids;    Ceramide;    TNF;    Neuroinflammation;   
Others  :  863774
DOI  :  10.1186/1750-1326-7-45
 received in 2012-04-27, accepted in 2012-08-20,  发布年份 2012
PDF
【 摘 要 】

Background

Dopaminergic (DA) neurons in the ventral midbrain selectively degenerate in Parkinson’s disease (PD) in part because their oxidative environment in the substantia nigra (SN) may render them vulnerable to neuroinflammatory stimuli. Chronic inhibition of soluble Tumor Necrosis Factor (TNF) with dominant-negative TNF inhibitors protects DA neurons in rat models of parkinsonism, yet the molecular mechanisms and pathway(s) that mediate TNF toxicity remain(s) to be clearly identified. Here we investigated the contribution of ceramide sphingolipid signaling in TNF-dependent toxicity.

Results

Ceramide dose-dependently reduced the viability of DA neuroblastoma cells and primary DA neurons and pharmacological inhibition of sphingomyelinases (SMases) with three different inhibitors during TNF treatment afforded significant neuroprotection by attenuating increased endoplasmic reticulum (ER) stress, loss of mitochondrial membrane potential, caspase-3 activation and decreases in Akt phosphorylation. Using lipidomics mass spectrometry we confirmed that TNF treatment not only promotes generation of ceramide, but also leads to accumulation of several atypical deoxy-sphingoid bases (DSBs). Exposure of DA neuroblastoma cells to atypical DSBs in the micromolar range reduced cell viability and inhibited neurite outgrowth and branching in primary DA neurons, suggesting that TNF-induced de novo synthesis of atypical DSBs may be a secondary mechanism involved in mediating its neurotoxicity in DA neurons.

Conclusions

We conclude that TNF/TNFR1-dependent activation of SMases generates ceramide and sphingolipid species that promote degeneration and caspase-dependent cell death of DA neurons. Ceramide and atypical DSBs may represent novel drug targets for development of neuroprotective strategies that can delay or attenuate the progressive loss of nigral DA neurons in patients with PD.

【 授权许可】

   
2012 Martinez et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140725061119782.pdf 1225KB PDF download
50KB Image download
37KB Image download
92KB Image download
49KB Image download
46KB Image download
66KB Image download
87KB Image download
56KB Image download
81KB Image download
80KB Image download
66KB Image download
【 图 表 】

【 参考文献 】
  • [1]Banerjee R, et al.: Mitochondrial dysfunction in the limelight of Parkinson's disease pathogenesis. Biochim Biophys Acta 2009, 1792(7):651-663.
  • [2]Hunot S, Hirsch EC: Neuroinflammatory processes in Parkinson's disease. Ann Neurol 2003, 53 Suppl 3:S49-58. discussion S58-S60
  • [3]Hunot S, et al.: JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson's disease. Proc Natl Acad Sci U S A 2004, 101(2):665-670.
  • [4]McGeer PL, et al.: Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson's and Alzheimer's disease brains. Neurology 1988, 38(8):1285-1291.
  • [5]McGeer PL, Itagaki S, McGeer EG: Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol (Berl) 1988, 76(6):550-557.
  • [6]Tansey MG, et al.: Neuroinflammation in Parkinson's disease: is there sufficient evidence for mechanism-based interventional therapy? Front Biosci 2008, 13:709-717.
  • [7]Tansey MG, Goldberg MS: Neuroinflammation in Parkinson's disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis 2010, 37(3):510-518.
  • [8]Nagatsu T, et al.: Cytokines in Parkinson's disease. J Neural Transm Suppl 2000, 58:143-151.
  • [9]Wahner AD, et al.: Inflammatory cytokine gene polymorphisms and increased risk of Parkinson disease. Arch Neurol 2007, 64(6):836-40.
  • [10]McCoy MK, et al.: Blocking soluble tumor necrosis factor signaling with dominant-negative tumor necrosis factor inhibitor attenuates loss of dopaminergic neurons in models of Parkinson's disease. J Neurosci 2006, 26(37):9365-9375.
  • [11]Grell M, et al.: The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci U S A 1998, 95(2):570-575.
  • [12]Tartaglia LA, et al.: Tumor necrosis factor's cytotoxic activity is signaled by the p55 TNF receptor. Cell 1993, 73(2):213-216.
  • [13]Carvey PM, et al.: Intra-parenchymal injection of tumor necrosis factor-alpha and interleukin 1-beta produces dopamine neuron loss in the rat. J Neural Transm 2005, 112(5):601-612.
  • [14]Grell M, et al.: The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell 1995, 83(5):793-802.
  • [15]McGuire SO, et al.: Tumor necrosis factor alpha is toxic to embryonic mesencephalic dopamine neurons. Exp Neurol 2001, 169(2):219-230.
  • [16]MacEwan DJ: TNF receptor subtype signalling: differences and cellular consequences. Cell Signal 2002, 14(6):477-492.
  • [17]Goni FM, Alonso A: Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta 2006, 1758(12):1902-1921.
  • [18]Hannun YA, Obeid LM: Many ceramides. J Biol Chem 2011, 286(32):27855-27862.
  • [19]Hannun YA, Obeid LM, Wolff RA: The novel second messenger ceramide: identification, mechanism of action, and cellular activity. Adv Lipid Res 1993, 25:43-64.
  • [20]Kolesnick RN, Kronke M: Regulation of ceramide production and apoptosis. Annu Rev Physiol 1998, 60:643-665.
  • [21]Kolesnick R, Golde DW: The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell 1994, 77(3):325-328.
  • [22]Obeid LM, et al.: Programmed cell death induced by ceramide. Science 1993, 259(5102):1769-1771.
  • [23]Willaime S, et al.: Ceramide-induced apoptosis in cortical neurons is mediated by an increase in p38 phosphorylation and not by the decrease in ERK phosphorylation. Eur J Neurosci 2001, 13(11):2037-2046.
  • [24]Brugg B, et al.: Ceramide induces apoptosis in cultured mesencephalic neurons. J Neurochem 1996, 66(2):733-739.
  • [25]Choi HK, et al.: Immortalization of embryonic mesencephalic dopaminergic neurons by somatic cell fusion. Brain Res 1991, 552(1):67-76.
  • [26]Lee JK, et al.: Regulator of G-protein signaling 10 promotes dopaminergic neuron survival via regulation of the microglial inflammatory response. J Neurosci 2008, 28(34):8517-8528.
  • [27]McCoy MK, et al.: Intranigral lentiviral delivery of dominant-negative TNF attenuates neurodegeneration and behavioral deficits in hemiparkinsonian rats. Mol Ther 2008, 16(9):1572-1579.
  • [28]Tang L, et al.: Pharmacological and functional characterization of D2, D3 and D4 dopamine receptors in fibroblast and dopaminergic cell lines. J Pharmacol Exp Ther 1994, 268(1):495-502.
  • [29]Luberto C, et al.: Inhibition of tumor necrosis factor-induced cell death in MCF7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 2002, 277(43):41128-41139.
  • [30]Mortiboys H, et al.: Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts. Ann Neurol 2008, 64(5):555-565.
  • [31]Shaner RL, et al.: Quantitative analysis of sphingolipids for lipidomics using triple quadrupole and quadrupole linear ion trap mass spectrometers. J Lipid Res 2009, 50(8):1692-1707.
  • [32]Bielawska A, et al.: Selectivity of ceramide-mediated biology. Lack of activity of erythro-dihydroceramide. J Biol Chem 1993, 268(35):26226-26232.
  • [33]Peppel K, Crawford D, Beutler B: A tumor necrosis factor (TNF) receptor-IgG heavy chain chimeric protein as a bivalent antagonist of TNF activity. J Exp Med 1991, 174(6):1483-1489.
  • [34]Penno A, et al.: Hereditary sensory neuropathy type 1 is caused by the accumulation of two neurotoxic sphingolipids. J Biol Chem 2010, 285(15):11178-11187.
  • [35]Smith ER, Merrill AH, Obeid LM, Hannun YA: Effects of sphingosine and other sphingolipids on protein kinase C. In Methods in Enzymology Part B: Sphingolipid Metabolism and Cell Signaling. Volume 213. Edited by Alfred H, Merrill JAH, Yusuf A. Hannun: Elsevier Inc; 2003:361-373.
  • [36]Woodcock J: Sphingosine and ceramide signalling in apoptosis. IUBMB Life 2006, 58(8):462-466.
  • [37]Kolzer M, Werth N, Sandhoff K: Interactions of acid sphingomyelinase and lipid bilayers in the presence of the tricyclic antidepressant desipramine. FEBS Lett 2004, 559(1–3):96-98.
  • [38]Lee DH, et al.: Identification and evaluation of neutral sphingomyelinase 2 inhibitors. Arch Pharm Res 2011, 34(2):229-236.
  • [39]Roth AG, et al.: Potent and selective inhibition of acid sphingomyelinase by bisphosphonates. Angew Chem Int Ed Engl 2009, 48(41):7560-7563.
  • [40]Sauane M, et al.: Ceramide plays a prominent role in MDA-7/IL-24-induced cancer-specific apoptosis. J Cell Physiol 2010, 222(3):546-555.
  • [41]Xue X, et al.: Tumor necrosis factor alpha (TNFalpha) induces the unfolded protein response (UPR) in a reactive oxygen species (ROS)-dependent fashion, and the UPR counteracts ROS accumulation by TNFalpha. J Biol Chem 2005, 280(40):33917-33925.
  • [42]Yamamuro A, et al.: Involvement of endoplasmic reticulum stress on the cell death induced by 6-hydroxydopamine in human neuroblastoma SH-SY5Y cells. Neurochem Res 2006, 31(5):657-664.
  • [43]Chinta SJ, et al.: Coupling endoplasmic reticulum stress to the cell death program in dopaminergic cells: effect of paraquat. Neuromolecular Med 2008, 10(4):333-342.
  • [44]Ling YH, et al.: Activation of ER stress and inhibition of EGFR N-glycosylation by tunicamycin enhances susceptibility of human non-small cell lung cancer cells to erlotinib. Cancer Chemother Pharmacol 2009, 64(3):539-548.
  • [45]Ghavami S, et al.: Role of BNIP3 in TNF-induced cell death–TNF upregulates BNIP3 expression. Biochim Biophys Acta 2009, 1793(3):546-560.
  • [46]Garcia-Ruiz C, et al.: Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 1997, 272(17):11369-11377.
  • [47]Bertazza L, Mocellin S: Tumor necrosis factor (TNF) biology and cell death. Front Biosci 2008, 13:2736-2743.
  • [48]Sawada M, et al.: Ordering of ceramide formation, caspase activation, and Bax/Bcl-2 expression during etoposide-induced apoptosis in C6 glioma cells. Cell Death Differ 2000, 7(9):761-772.
  • [49]Kacher Y, Futerman AH: Genetic diseases of sphingolipid metabolism: pathological mechanisms and therapeutic options. FEBS Lett 2006, 580(23):5510-5517.
  • [50]Brunet A, et al.: Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999, 96:857-868.
  • [51]Di Nardo A, et al.: Tuberous sclerosis complex activity is required to control neuronal stress responses in an mTOR-dependent manner. J Neurosci 2009, 29(18):5926-5937.
  • [52]Zeidan YH, et al.: Acid ceramidase but not acid sphingomyelinase is required for tumor necrosis factor-{alpha}-induced PGE2 production. J Biol Chem 2006, 281(34):24695-24703.
  • [53]Memon RA, et al.: Endotoxin and cytokines increase hepatic sphingolipid biosynthesis and produce lipoproteins enriched in ceramides and sphingomyelin. Arterioscler Thromb Vasc Biol 1998, 18(8):1257-1265.
  • [54]Sims K, et al.: Kdo2-lipid A, a TLR4-specific agonist, induces de novo sphingolipid biosynthesis in RAW264.7 macrophages, which is essential for induction of autophagy. J Biol Chem 2010, 285(49):38568-38579.
  • [55]Merrill AH Jr: Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 2011, 111(10):6387-6422.
  • [56]Pruett ST, et al.: Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols. J Lipid Res 2008, 49(8):1621-1639.
  • [57]Zitomer NC, et al.: Ceramide synthase inhibition by fumonisin B1 causes accumulation of 1-deoxysphinganine: a novel category of bioactive 1-deoxysphingoid bases and 1-deoxydihydroceramides biosynthesized by mammalian cell lines and animals. J Biol Chem 2009, 284(8):4786-4795.
  • [58]Rotthier A, et al.: Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation. Brain 2009, 132(Pt 10):2699-2711.
  • [59]Xu YH, et al.: Multi-system disorders of glycosphingolipid and ganglioside metabolism. J Lipid Res 2010, 51(7):1643-1675.
  • [60]Lindholm D, Wootz H, Korhonen L: ER stress and neurodegenerative diseases. Cell Death Differ 2006, 13(3):385-392.
  • [61]Wang HQ, Takahashi R: Expanding insights on the involvement of endoplasmic reticulum stress in Parkinson's disease. Antioxid Redox Signal 2007, 9(5):553-561.
  • [62]Lee K, et al.: IRE1-mediated unconventional mRNA splicing and S2P-mediated ATF6 cleavage merge to regulate XBP1 in signaling the unfolded protein response. Genes Dev 2002, 16(4):452-466.
  • [63]Yamamoto K, et al.: Differential contributions of ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting elements ERSE, UPRE and ERSE-II. J Biochem 2004, 136(3):343-350.
  • [64]Orvisky E, et al.: Glucosylsphingosine accumulation in mice and patients with type 2 Gaucher disease begins early in gestation. Pediatr Res 2000, 48(2):233-237.
  • [65]Sun Y, et al.: Neuronopathic Gaucher disease in the mouse: viable combined selective saposin C deficiency and mutant glucocerebrosidase (V394L) mice with glucosylsphingosine and glucosylceramide accumulation and progressive neurological deficits. Hum Mol Genet 2010, 19(6):1088-1097.
  • [66]Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB: Neurotoxin-induced ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of AKT/mTOR signaling. J Clin Invest 2012, 122:1354-1367.
  • [67]Mogi M, et al.: Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994, 165(1–2):208-210.
  • [68]Nagatsu T, Sawada M: Inflammatory process in Parkinson's disease: role for cytokines. Curr Pharm Des 2005, 11(8):999-1016.
  • [69]Hoozemans JJ, et al.: Activation of the unfolded protein response in Parkinson's disease. Biochem Biophys Res Commun 2007, 354(3):707-711.
  • [70]Paschen W, Mengesdorf T: Endoplasmic reticulum stress response and neurodegeneration. Cell Calcium 2005, 38(3–4):409-415.
  • [71]Malagelada C, Jin ZH, Greene LA: RTP801 is induced in Parkinson's disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci 2008, 28(53):14363-14371.
  • [72]Lin MT, Beal MF: Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006, 443(7113):787-795.
  • [73]Betarbet R, et al.: Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci 2000, 3(12):1301-1306.
  • [74]Muriel MP, et al.: Mitochondrial free calcium levels (Rhod-2 fluorescence) and ultrastructural alterations in neuronally differentiated PC12 cells during ceramide-dependent cell death. J Comp Neurol 2000, 426(2):297-315.
  • [75]Darios F, et al.: Ceramide increases mitochondrial free calcium levels via caspase 8 and Bid: role in initiation of cell death. J Neurochem 2003, 84(4):643-654.
  • [76]Mattson MP: Neuronal life-and-death signaling, apoptosis, and neurodegenerative disorders. Antioxid Redox Signal 2006, 8(11–12):1997-2006.
  • [77]Perier C, Bove J, Vila M, Przedborski S: The rotenone model of Parkinson's disease. Trends Neurosci 2003, 26:345-346.
  • [78]Rotolo JA, et al.: Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 2005, 280(28):26425-26434.
  • [79]Deerberg A, et al.: Differential protection by wildtype vs. organelle-specific Bcl-2 suggests a combined requirement of both the ER and mitochondria in ceramide-mediated caspase-independent programmed cell death. Radiat Oncol 2009, 4:41. BioMed Central Full Text
  • [80]Dauer W, Przedborski S: Parkinson's disease: mechanisms and models. Neuron 2003, 39(6):889-909.
  • [81]Bras J, et al.: Emerging pathways in genetic Parkinson's disease: Potential role of ceramide metabolism in Lewy body disease. FEBS J 2008, 275(23):5767-5773.
  • [82]Mata IF, et al.: Glucocerebrosidase gene mutations: a risk factor for Lewy body disorders. Arch Neurol 2008, 65(3):379-382.
  • [83]Aharon-Peretz J, et al.: Mutations in the glucocerebrosidase gene and Parkinson disease: phenotype-genotype correlation. Neurology 2005, 65(9):1460-1461.
  • [84]Fuller M, et al.: Urinary lipid profiling for the identification of fabry hemizygotes and heterozygotes. Clin Chem 2005, 51(4):688-694.
  • [85]Hurwitz R, Ferlinz K, Sandhoff K: The tricyclic antidepressant desipramine causes proteolytic degradation of lysosomal sphingomyelinase in human fibroblasts. Biol Chem Hoppe Seyler 1994, 375(7):447-450.
  • [86]Devos D, et al.: Comparison of desipramine and citalopram treatments for depression in Parkinson's disease: a double-blind, randomized, placebo-controlled study. Mov Disord 2008, 23(6):850-857.
  文献评价指标  
  下载次数:68次 浏览次数:10次