期刊论文详细信息
Journal of Biomedical Science
Ischemic preconditioning reduces endoplasmic reticulum stress and upregulates hypoxia inducible factor-1α in ischemic kidney: the role of nitric oxide
Research
Mohamed Amine Zaouali1  Joan Rosello-Catafau1  Abdel-Hédi Miled2  Dalila Saidane-Mosbahi3  Asma Mahfoudh-Boussaid3  Hassen Ben Abdennebi3  Kaouther Hadj-Ayed3 
[1] Hepatic ischemia reperfusion unit, Department of experimental pathology, Institut d'Investigacions Biomèdiques de Barcelona-Consejo Superior de Investigaciones Científicas, Barcelona, Spain;Laboratory of biochemistry, faculty of pharmacy, university of Monastir, Tunisia;Laboratory of human physiology, faculty of pharmacy, university of Monastir, Tunisia;
关键词: kidney;    ischemia-reperfusion;    ischemic preconditioning;    Akt;    eNOS, HIF1-α;    ER stress;   
DOI  :  10.1186/1423-0127-19-7
 received in 2011-11-03, accepted in 2012-01-17,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundAlthough recent studies indicate that renal ischemic preconditioning (IPC) protects the kidney from ischemia-reperfusion (I/R) injury, the precise protective mechanism remains unclear. In the current study, we investigated whether early IPC could upregulate hypoxia inducible transcription factor-1α (HIF-1α) expression and could reduce endoplasmic reticulum (ER) stress after renal I/R and whether pharmacological inhibition of nitric oxide (NO) production would abolish these protective effects.MethodsKidneys of Wistar rats were subjected to 60 min of warm ischemia followed by 120 min of reperfusion (I/R group), or to 2 preceding cycles of 5 min ischemia and 5 min reperfusion (IPC group), or to intravenously injection of NG-nitro-L-arginine methylester (L-NAME, 5 mg/kg) 5 min before IPC (L-NAME+IPC group). The results of these experimental groups were compared to those of a sham-operated group. Sodium reabsorption rate, creatinine clearance, plasma lactate dehydrogenase (LDH) activity, tissues concentrations of malonedialdehyde (MDA), HIF-1α and nitrite/nitrate were determined. In addition, Western blot analyses were performed to identify the amounts of Akt, endothelial nitric oxide synthase (eNOS) and ER stress parameters.ResultsIPC decreased cytolysis, lipid peroxidation and improved renal function. Parallely, IPC enhanced Akt phosphorylation, eNOS, nitrite/nitrate and HIF-1α levels as compared to I/R group. Moreover, our results showed that IPC increased the relative amounts of glucose-regulated protein 78 (GRP78) and decreased those of RNA activated protein kinase (PKR)-like ER kinase (PERK), activating transcription factor 4 (ATF4) and TNF-receptor-associated factor 2 (TRAF2) as judged to I/R group. However, pre treatment with L-NAME abolished these beneficial effects of IPC against renal I/R insults.ConclusionThese findings suggest that early IPC protects kidney against renal I/R injury via reducing oxidative and ER stresses. These effects are associated with phosphorylation of Akt, eNOS activation and NO production contributing thus to HIF-1α stabilization. The beneficial impact of IPC was abolished when NO production is inhibited before IPC application.

【 授权许可】

Unknown   
© Mahfoudh-Boussaid et al; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311101367036ZK.pdf 924KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  文献评价指标  
  下载次数:1次 浏览次数:1次