期刊论文详细信息
Particle and Fibre Toxicology
Susceptibility of Anopheles sinensis to Plasmodium vivax in malarial outbreak areas of central China
Jetsumon Sattabongkot1  Qi Gao2  Jun Cao4  Yaobao Liu4  Feng Lu4  Julin Li4  Huayun Zhou4  Hui Xia3  Guoding Zhu2 
[1] Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand;Department of Parasitology, Medical College of Soochow University, Suzhou 215123, China;Department of Parasitology, Bengbu Medical College, 2600 Donghai Dadao Road, Bengbu 233030, China;Jiangsu Provincial Key Laboratory of Parasite Molecular Biology, Jiangsu Institute of Parasitic Diseases, Wuxi, Jiangsu Province, China
关键词: Anopheles anthropophagus;    Anopheles sinensis;    Plasmodium vivax;    Membrane blood feeding;   
Others  :  1227005
DOI  :  10.1186/1756-3305-6-176
 received in 2013-02-13, accepted in 2013-06-10,  发布年份 2013
PDF
【 摘 要 】

Background

Anopheles sinensis, Anopheles anthropophagus, Anopheles minimus and Anopheles dirus are the major vectors of malaria transmission in China. Anopheles sinensis is considered a secondary vector due to its relatively low malaria-transmission ability. However, in 2005, an outbreak of over 40,000 Plasmodium vivax malaria cases was reported in areas where Anopheles sinensis was the only major vector. Therefore, it is necessary to reassess the malaria transmission ability of this vector species in China.

Methods

Laboratory colonies of An. sinensis and An. anthropophagus, and first-generation progeny (F1) of An. sinensis that had been collected in central China, were infected by direct membrane feeding assay with mono-vivax gametocyte-containing blood collected from vivax-infected patients. The mosquitoes were kept for 7 to 14 days post-blood feeding to allow parasites to develop into oocysts and sporozoites. Infectivity was measured by dissecting midguts and salivary glands. The presence of oocysts and sporozoites was determined by microscopy at 7 and 14 days post-blood feeding, and the numbers of gametocytes and asexual parasites, as well as mosquito parasite infections, were determined.

Results

The positive oocyst and sporozoite feed rates of the 142 pairs of lab-colony An. sinensis and An. anthropophagus were not significantly different, and the same results were found with the 10 pairs of laboratory and F1 An. sinensis. An. sinensis had more oocysts/midgut at 7 days post-feeding than An. anthropophagus, but the gametocytemia, asexual parasitemia, and ratio of macrogametocytes to microgametocytes, did not correlate with either oocyst or sporozoite infection. However, in the oocyst-positive mosquitoes, there was a correlation between gametocytemia and the average oocyst number/midgut.

Conclusions

The susceptibility of An. sinensis (both laboratory and F1) to P. vivax-infected blood is similar to Anopheles anthropophagus, when evaluated by membrane feeding assay under laboratory conditions. In recent years, in central China, the vivax malaria transmission ability of An. sinensis has probably been underestimated. Further studies of this species in other regions are needed. An. sinensis could also be a good candidate vector for evaluating candidate malaria transmission-blocking vaccines (TBV).

【 授权许可】

   
2013 Zhu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150927080925130.pdf 1094KB PDF download
Figure 5. 51KB Image download
Figure 4. 67KB Image download
Figure 3. 61KB Image download
Figure 2. 26KB Image download
Figure 1. 140KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Chen B, Harbach RE, Butlin RK: Molecular and morphological studies on the Anopheles minimus group of mosquitoes in southern China: taxonomic review, distribution and malaria vector status. Med Vet Entomol 2002, 16:253-265.
  • [2]Wu S, Pan JY, Wang XZ, Zhou SS, Zhang GQ, Liu Q, Tang LH: Anopheles pseudowillmori is the predominant malaria vector in Motuo County. Tibet Autonomous Region. Malaria J 2009, 8:46. BioMed Central Full Text
  • [3]Rueda LM, Zhao TY, Ma YJ, Gao Q, Zhu GD, Khuntirat B, Sattabongkot J, Wilkerson RC: Updated distribution records of the Anopheles (Anopheles) hyrcanus species-group (Diptera: Culicidae) in China. Zootaxa 2007, 1407:43-55.
  • [4]Zhou SS, Wang Y, Fang W, Tang LH: [Malaria situation in the People's Republic Of China in 2007]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2008, 26(6):401-403.
  • [5]Gao Q, Beebe NW, Cooper RD: Molecular identification of the malaria vectors Anopheles anthropophagus and Anopheles sinensis (Diptera: Culicidae) in central China using polymerase chain reaction and appraisal of their position within the Hyrcanus group. J Med Entomol 2004, 41(1):5-11.
  • [6]Gao Q, Zhou HY, Cooper RD, Li FH, Su YP, Zhu GD, Cao J, Beebe NW: A simple technique for the genetic identification of different Anopheline mosquitoes among the Anopheles hyrcanus complex. Chin J Zoonoses 2005, 21(3):193-196.
  • [7]Li JL, Zhou HY, Shen BX: The susceptibility investigation of Anopheles sinensis and Anopheles anthropophagus to Plasmodium vivax. Chin J Schisto Control 1996, 8(4):1.
  • [8]Liu CF, Qian HL, GU ZC, Pan JY, Zhen X: The current comparsion of malaria transmission effect ofAnopheles sinensisandAnopheles anthropophagusin China. J Med Res 1991, 20(5):2.
  • [9]Zhou SS, Wang Y, Tang LH: [Malaria situation in the People's Republic of China in 2006]. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2007, 25(6):439-441.
  • [10]Billker O, Shaw MK, Margos G, Sinden RE: The roles of temperature, pH and mosquito factors as triggers of male and female gametogenesis of Plasmodium berghei in vitro. Parasitol 1997, 115(Pt 1):1-7.
  • [11]Bangs MJ, Soelarto T, Barodji , Wicaksana BP, Boewono DT: Colonization of Anopheles maculatus from Central Java, Indonesia. J Am Mosq Control Assoc 2002, 18(4):359-363.
  • [12]Rong YQ, Fang HY, Yang ZY, Zhou HY, Mei HG: The susceptibility study of Anopheles sinensis and Anopheles anthropophagus to Plasmodium vivax and Plasmodium falciparum. JiangSu Ji Fang 1986, 3:4.
  • [13]Solarte Y, Manzano MR, Rocha L, Hurtado H, James MA, Arevalo-Herrera M, Herrera S: Plasmodium vivax sporozoite production in Anopheles albimanus mosquitoes for vaccine clinical trials. Am J Trop Med Hyg 2011, 84(2 Suppl):28-34.
  • [14]Heather M, Ferguson AFR: Why is the effect of malaria parasites on mosquito survival still unresolved? Trends Parasitol 2002, 18(6):256-261.
  • [15]Zhou SS, Zhang SS, Wang JJ, Zheng X, Huang F, Li WD, Xu X, Zhang HW: Spatial correlation between malaria cases and water-bodies in Anopheles sinensis dominated areas of Huang-Huai plain, China. Parasit Vectors 2012, 5:106. BioMed Central Full Text
  • [16]Lehmann T, Hume JC, Licht M, Burns CS, Wollenberg K, Simard F, Ribeiro JM: Molecular evolution of immune genes in the malaria mosquito Anopheles gambiae. PLoS One 2009, 4(2):e4549.
  • [17]Tan WL, Wang ZM, Li CX, Chu HL, Xu Y, Dong YD, Wang ZC, Chen DY, Liu H, Liu DP, et al.: First report on co-occurrence knockdown resistance mutations and susceptibility to beta-cypermethrin in Anopheles sinensis from Jiangsu Province. China PLoS One 2012, 7(1):e29242.
  • [18]Verhaeghen K, Van Bortel W, Trung HD, Sochantha T, Keokenchanh K, Coosemans M: Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasit Vectors 2010, 3(1):59. BioMed Central Full Text
  • [19]Cui F, Raymond M, Qiao CL: Insecticide resistance in vector mosquitoes in China. Pest Manag Sci 2006, 62(11):1013-1022.
  • [20]Wang J: Resistance and response to selection to deltamethrin in Anopheles sinensis from Zhejiang, China. J Am Mosq Control Assoc 2000, 16(1):9-12.
  • [21]Zhang Z, Yang C: Application of deltamethrin-impregnated bednets for mosquito and malaria control in Yunnan, China. Southeast Asian J Trop Med Public Health 1996, 27(2):367-371.
  • [22]The malERA Consultative Group on Vector Control: A research agenda for malaria eradication: vector control. PLoS Med 2011, 8(1):e1000401.
  • [23]Tadei WP, Dutary Thatcher B: Malaria vectors in the Brazilian amazon: Anopheles of the subgenus Nyssorhynchus. Rev Inst Med Trop São Paulo 2000, 42(2):87-94.
  • [24]Zollner GE, Ponsa N, Garman GW, Poudel S, Bell JA, Sattabongkot J, Coleman RE, Vaughan JA: Population dynamics of sporogony for Plasmodium vivax parasites from western Thailand developing within three species of colonized Anopheles mosquitoes. Malaria J 2006, 5:68. BioMed Central Full Text
  • [25]Liu D, Luo SH, Shu HP, Fu RD: Research on the factors influencing the sporogonic multiplication of Plasmodium vivax in the mosquito vector. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing ZaZhi 1995, 13:21-24.
  • [26]Nacher M, Silachamroon U, Singhasivanon P, Wilairatana P, Phumratanaprapin W, Fontanet A, Looareesuwan S: Risk factors for Plasmodium vivax gametocyte carriage in Thailand. Am J Trop Med Hyg 2004, 71(6):693-695.
  • [27]Cirimotich CM, Dong Y, Garver LS, Sim S, Dimopoulos G: Mosquito immune defenses against Plasmodium infection. Dev Comp Immunol 2010, 34(4):387-395.
  • [28]Hughes GL, Koga R, Xue P, Fukatsu T, Rasgon JL: Wolbachia infections are virulent and inhibit the human malaria parasite Plasmodium falciparum in Anopheles gambiae. PLoS Pathog 2011, 7(5):e1002043.
  • [29]Parmakelis A, Moustaka M, Poulakakis N, Louis C, Slotman MA, Marshall JC, Awono-Ambene PH, Antonio-Nkondjio C, Simard F, Caccone A, et al.: Anopheles immune genes and amino acid sites evolving under the effect of positive selection. PLoS One 2010, 5(1):e8885.
  • [30]Crawford JE, Guelbeogo WM, Sanou A, Traore A, Vernick KD, Sagnon N, Lazzaro BP: De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-seq technology. PLoS One 2010, 5(12):e14202.
  • [31]Bahia AC, Kubota MS, Tempone AJ, Pinheiro WD, Tadei WP, Secundino NF, Traub-Cseko YM, Pimenta PF: Anopheles aquasalis Infected by Plasmodium vivax displays unique gene expression profiles when compared to other malaria vectors and plasmodia. PLoS One 2010, 5(3):e9795.
  • [32]Gonzalez-Ceron L, Rodriguez MH, Nettel JC, Villarreal C, Kain KC, Hernandez JE: Differential susceptibilities of Anopheles albimanus and Anopheles pseudopunctipennis to infections with coindigenous Plasmodium vivax variants VK210 and VK247 in southern Mexico. Infect Immun 1999, 67(1):410-412.
  • [33]M-T RC: The malarial infectivity of an African village population to mosquitoes (Anopheles gambiae). Am J Trop Med Hyg 1957, 6:971-979.
  • [34]Awono-Ambene HP, Diawara L, Robert V: Comparison of direct and membrane feeding methods to infect Anopheles arabiensis with Plasmodium falciparum. Am J Trop Med Hyg 2001, 64(1–2):32-34.
  • [35]Sattabongkot J, Tsuboi T, Hisaeda H, Tachibana M, Suwanabun N, Rungruang T, Cao YM, Stowers AW, Sirichaisinthop J, Coleman RE, et al.: Blocking of transmission to mosquitoes by antibody to Plasmodium vivax malaria vaccine candidates Pvs25 and Pvs28 despite antigenic polymorphism in field isolates. Am J Trop Med Hyg 2003, 69(5):536-541.
  • [36]Sattabongkot J, Maneechai N, Phunkitchar V, Eikarat N, Khuntirat B, Sirichaisinthop J, Burge R, Coleman RE: Comparison of artificial membrane feeding with direct skin feeding to estimate the infectiousness of Plasmodium vivax gametocyte carriers to mosquitoes. Am J Trop Med Hyg 2003, 69(5):529-535.
  • [37]Tachibana M, Sato C, Otsuki H, Sattabongkot J, Kaneko O, Torii M, Tsuboi T: Plasmodium vivax gametocyte protein Pvs230 is a transmission-blocking vaccine candidate. Vaccine 2012, 30(10):1807-1812.
  • [38]Tonwong N, Sattabongkot J, Tsuboi T, Iriko H, Takeo S, Sirichaisinthop J, Udomsangpetch R: Natural infection of Plasmodium falciparum induces inhibitory antibodies against gametocyte development in human hosts. Jpn J Infect Dis 2012, 65(2):152-156.
  • [39]Joshi D, Choochote W, Park MH, Kim JY, Kim TS, Suwonkerd W, Min GS: The susceptibility of Anopheles lesteri to infection with Korean strain of Plasmodium vivax. Malaria J 2009, 8(12):42.
  • [40]Joshi D, Kim JY, Choochote W, Park MH, Min GS: Preliminary vivax malaria vector competence for three members of the Anopheles hyrcanus group in the Republic of Korea. J Am Mosq Control Assoc 2011, 27(3):312-314.
  • [41]Park MH, Choochote W, Kim SJ, Somboon P, Saeung A, Tuetan B, Tsuda Y, Takagi M, Joshi D, Ma Y, Min GS: Nonreproductive isolation among four allopatric strains of Anopheles sinensis in Asia. J Am Mosq Control Assoc 2008, 24(4):489-495.
  文献评价指标  
  下载次数:0次 浏览次数:12次