Particle and Fibre Toxicology | |
Genetic variations of ND5 gene of mtDNA in populations of Anopheles sinensis (Diptera: Culicidae) malaria vector in China | |
Qi-Yong Liu2  Shu-Ran Yang3  Xiao-Bo Liu2  Abdelrafie M Makhawi1  | |
[1] Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan;Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China;China CDC Key Laboratory of Surveillance and Early-Warning on Infectious Disease, Chinese Center for Disease Control and Prevention, Beijing 102206, China | |
关键词: ND5 gene; mtDNA; Population genetics structure; Anopheles sinensis; | |
Others : 824338 DOI : 10.1186/1756-3305-6-290 |
|
received in 2013-02-12, accepted in 2013-09-24, 发布年份 2013 | |
【 摘 要 】
Background
Anopheles sinensis is a principal vector for Plasmodium vivax malaria in most parts of China. Understanding of genetic structure and genetic differentiation of the mosquito should contribute to the vector control and malaria elimination in China.
Methods
The present study investigated the genetic structure of An. sinensis populations using a 729 bp fragment of mtDNA ND5 among 10 populations collected from seven provinces in China.
Results
ND5 was polymorphic by single mutations within three groups of An. sinensis that were collected from 10 different geographic populations in China. Out of 140 specimens collected from 10 representative sites, 84 haplotypes and 71 variable positions were determined. The overall level of genetic differentiation of An. sinensis varied from low to moderate across China and with a FST range of 0.00065 – 0.341. Genealogy analysis clustered the populations of An. sinensis into three main clusters. Each cluster shared one main haplotype. Pairwise variations within populations were higher (68.68%) than among populations (31.32%) and with high fixation index (FST = 0.313). The results of the present study support population growth and expansion in the An. sinensis populations from China. Three clusters of An. sinensis populations were detected in this study with each displaying different proportion patterns over seven Chinese provinces. No correlation between genetic and geographic distance was detected in overall populations of An. sinensis (R2 = 0.058; P = 0.301).
Conclusions
The results indicate that the ND5 gene of mtDNA is highly polymorphic in An. sinensis and has moderate genetic variability in the populations of this mosquito in China. Demographic and spatial results support evidence of expansion in An. sinensis populations.
【 授权许可】
2013 Makhawi et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140713031026644.pdf | 919KB | download | |
Figure 4. | 70KB | Image | download |
Figure 3. | 44KB | Image | download |
Figure 2. | 41KB | Image | download |
Figure 1. | 53KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
【 参考文献 】
- [1]Ma SF: Studies on the Anopheles (A) sinensis group of mosquitoes in China, including four new sibling species. Sinozoologia 1981, 1:59-74.
- [2]Tan WL, Wang ZM, Li CX, Chu HL, Xu Y, Dong YD, Wang Z, Chen DY, Liu H, Liu DP, Liu N, Sun J, Zhao T: First report on co-occurrence knockdown resistance mutations and susceptibility to beta-cypermethrin in Anopheles sinensis from Jiangsu Province, China. PLoS ONE 2012, 7:1371-1380.
- [3]Han ET, Lee DH, Park KD, Seok WS, Kim YS, Tsuboi T, Shin EH, Chai JY: Re-emerging vivax malaria: changing patterns of annual incidence and control programs in the republic of Korea. Korean J Parasitol 2006, 44:285-294.
- [4]Ree H: Studies on Anopheles sinensis, the vector species of vivax malaria in Korea. Korean J Parasitol 2005, 43:75-92.
- [5]Zhou SS, Huang F, Wang JJ, Zhang SS, Su YP, Tang LH: Geographical, meteorological and vectorial factors related to malaria re-emergence in Huang-Huai River of central China. Malar J 2010, 9:337. BioMed Central Full Text
- [6]Zhou SS, Wang Y, Fang W, Tang LH: Malaria situation in the People’s Republic of China in 2008. Chinese Journal of Parasitology and Parasitic Diseases 2009, 27:45-455.
- [7]Tang LH: Progress in malaria control in China. Chin Med J 2000, 113:89-92.
- [8]Chen B, Harbach RE, Butlin RK: Molecular and morphological studies on the Anopheles minimus group of mosquitoes in southern China: taxonomic review, distribution and malaria vector status. Med Vet Entomol 2002, 16:253-265.
- [9]Zhou SS, Wang Y, Tang LH: Malaria situation in the People's Republic of China in 2005. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi 2006, 24(6):401-403.
- [10]Tang LH: Research achievement in malaria control in China. Chinese Journal of Parasitology and Parasitic Diseases 1999, 17:257-259.
- [11]Ma YJ, Yang P, Xu JN, Chen Z, Pan B: Identification of Anopheles lesteri in China (Diptera: Culicidae): morphologic characters, chromosome karyotype and molecular markers. Entomotaxonomia 2005, 27:199-208.
- [12]Yao YT, Wu CC: One year’s observation of Anopheles hyrcanus var. sinensis in Nanking. Trans Far- East Assoc Trop Med 1934, 3:2-26. 9th Congr
- [13]Yao YT, Ling LC: Notes on the comparative morphological studies of the three types of eggs laid by Anopheles hyrcanus var. sinensis in Nanking. Trans Far-East Assoc Trop Med 1938, 2:831-837. 2
- [14]Baisas FE, Hu SMK: Anopheles hyrcanus var. sinensis of the Philippines and certain parts of China, with some comments on Anopheles hyrcanus var. nigerrimus of the Philippines. Mon Bull Bur Health Philipp 1936, 16:205-242.
- [15]Ho C, Chou TC, Chen TH, Hsueh A: The Anopheles hyrcanus group and its relation to malaria in East China. Chin Med J 1962, 81:71-78.
- [16]Baimai V, Rattanarithikul R, Kijchalao U: Metaphase karyotypes of Anopheles of Thailand and Southeast Asia: The Hyrcanus group. J Am Mosq Control Assoc 1993, 9:59-67.
- [17]Min GS, Choochote W, Jitpakdi A, Kim SJ, Kim W, et al.: Intraspecific hybridization of Anopheles sinensis (Diptera: Culicidae) strains from Thailand and Korea. Mol Cell 2002, 14:198-204.
- [18]Xu SB, Qu YJ: Studies on chromosomes of thirteen species of anopheline mosquitoes in China. J Med Coll PLA 1991, 6:286-291.
- [19]Ma Y, Yang M, Fan Y, Wu J, Ma Y, et al.: Population structure of the malaria vector Anopheles sinensis (Diptera: Culicidae) in China: two gene pools inferred by microsatellites. PLoS ONE 2011, 6:1371-1380.
- [20]Wilkerson RC, Li C, Rueda LM, Kim HC, Klein TA, Song GH, Strickman D: Molecular confirmation of Anopheles (Anopheles) lesteri from the Republic of South Korea and its genetic identity with An. (Ano.) anthropophagus from China (Diptera: Culicidae). Zootaxa 2003, 378:1-14.
- [21]Ree HI, Yong TS, Hwang UW: Identification of four species of the Anopheles hyrcanus complex (Diptera: Culicidae) found in Korea using species-specific primers for Polymerase Chain Reaction Assay. Med Entomol Zool 2005, 56:201-205.
- [22]Li C, Lee JS, Groebner JL, Kim HC, Klein TA, O’Guinn ML, Wilkerson RC: A newly recognized species in the Anopheles Hyrcanus complex and molecular identification of related species from the Republic of South Korea (Diptera: Culicidae). Zootaxa 2005, 939:1-8.
- [23]Rueda LM: Two new species of Anopheles (Anopheles) Hyrcanus group (Diptera: Culicidae) from the Republic of South Korea. Zootaxa 2005, 941:1-26.
- [24]Lehmann T, Besansky NJ, Hawley WA, Fahey TG, Kamau L, Collins FH: Microgeographic structure of Anopheles gambiae in western Kenya based on mtDNA and microsatellite loci. Mol Ecol 1997, 6:243-253.
- [25]Donnelly MJ, Twonson H: Evidence for extensive genetic differentiation among populations of the malaria vector Anopheles arabiensis eastern Africa. Insect Mol Biol 2000, 9:357-367.
- [26]Simard F, Lehmann T, Lemasson JJ, Diatta M, Fontenille D: Persistence of Anopheles arabiensis during the severe dry season conditions in Senegal: an indirect approach using microsatellite loci. Insect Mol Biol 2000, 9:467-479.
- [27]Rongnoparut P, Sirichotpakorn N, Rattanarithiku R, Yaicharoen S, Linthicum KJ: Estimates of gene flow among Anopheles maculatus populations in Thailand using microsatellite analysis. Am J Trop Med Hyg 1999, 60:508-515.
- [28]Lehmann T, Hawley WA, Grebert H, Danga M, Atieli F, Collins FH: The Rift Valley complex as a barrier to gene flow for Anopheles gambiae in Kenya. J Hered 1999, 90:613-621.
- [29]Scarpassa VM, Tadei WP, Suarez MF: Population structure and genetic divergence in Anopheles nuneztovari (Diptera: Culicidae) from Brazil and Colombia. Am J Trop Med Hyg 1999, 60:1010-1018.
- [30]Collins FH, Besansky NJ: Vector biology and control of malaria in Africa. Science 1994, 264:1874-1875.
- [31]Collins FH, Paskewitz S: A review of the use of ribosomal DNA (rDNA) to differentiate among cryptic Anopheles species. Insect Mol Biol 1996, 5:1-9.
- [32]Zink RM, Borrowclough GF: Mitochondrial DNA under siege in avian phylogeoraphy. Mol Ecol 2008, 17:2107-2121.
- [33]Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P: Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Ento Soc Am 1994, 87:651-701.
- [34]Meyer A: Shortcomings of cytochrome b gene as a molecular marker. Tre Ecol & Evol 1994, 9:278-280.
- [35]Krzywinski J, Wilkerson RC, Besansky NJ: Evolution of mitochondrial and ribosomal gene sequences in anophelinae (Diptera: Culicidae): implications for phylogeny reconstruction. Mol Phyl Evol 2001, 18(3):479-487.
- [36]Lu BL: Fauna Sinica, Insect Diptera: Culicidae II. Beijing Science Press 1997., 9
- [37]Ma YJ, Qu FY, Xu JJ: Sequence differences of rDNA-ITS2 and species-diagnostic PCR assay of Anopheles sinensis and Anopheles anthropophagus from China. J Med Coll PLA 1998, 13:123-128.
- [38]HALL TA: Bioedit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl. Acids Symp. Ser 1999, 41:95-98.
- [39]Nei M: Molecular evolutionary genetics. New York: Colombia University Press; 1987.
- [40]Rozas J, Sanchez-Delbarrio J, Anchez-Delbarrio J, Messeguer X, Rozas R: Dnasp: DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 2003, 19:2496-2497.
- [41]Tajima F: Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 1989, 123:585-595.
- [42]FU YX LIWH: Statistical tests of neutrality of mutations. Genetics 1993, 133:693-709.
- [43]Slatkin M: A measure of population subdivision based on microsatellite allele frequencies. Genetics 1995, 139:457-462.
- [44]Weir BS, Cockerham CC: Estimating F-statistics for the analysis of population structure. Evolution Int J Org Evolution 1984, 38:1358-1370.
- [45]Schneider S, Excoffier L: Estimation of past demographic parameters from the distribution of the pariwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 1999, 152:1079-1089.
- [46]Excoffier L, Laval G, Schneider S: Arlequin (version 3.0): an integrated software package for population genetics data analysis. Evol Bioinform Online 2005, 1:47-50.
- [47]Rogers AR, Harpending H: Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 1992, 9:552-569.
- [48]FU YX: Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 1997, 147:915-925.
- [49]Mantel N: The detection of disease clustering and a generalized regression approach. Cancer Res 1967, 27:209-220.
- [50]Clement M, Posada D, Crandall KA: TCS: a computer program to estimate gene genealogies. Mol Ecol 2000, 9(10):1657-1660.
- [51]Templeton AR, Crandall K, Sing CF: A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 1992, 132:619-633.
- [52]Jung J, Jung Y, Min GS, Kim W: Analysis of the population genetic structure of the malaria vector Anopheles sinensis in South Korea based on mitochondrial sequences. Am J Trop Med Hyg 2007, 77:310-315.
- [53]Yang M, Ma Y, Wu J: Mitochondrial genetic differentiation across populations of the malaria vector Anopheles lesteri from China (Diptera: Culicidae). Malar J 2011, 10:216. BioMed Central Full Text
- [54]Sarma DK, Prakash A, O’Loughlin SM, Bhattacharyya DR, Mohapatra PK, Bhattacharjee K, Das K, Singh S, Sarma NP, Ahmed GU, Walton C, Mahanta J: Genetic population structure of the malaria vector Anopheles baimaii in north-east India using mitochondrial DNA. Malar J 2012, 11:76. BioMed Central Full Text
- [55]Conn JE, Vineis JH, Bollback JP, Onyabe DY, Wilkerson RC, Póvoa MM: Population structure of the malaria vector Anopheles darlingi in a malaria-endemic region of eastern Amazonian Brazil. Am J Trop Med Hyg 2006, 74:798-806.
- [56]Scarpassa VM, Conn JE: Population genetic structure of the major malaria vector Anopheles darlingi (Diptera: Culicidae) from the Brazilian Amazon, using microsatellite markers. Mem Inst Oswaldo Cruz 2007, 102:319-327.
- [57]Mirabello L, Vineis JH, Yanoviak SP, Scarpassa VM, Póvoa MM, Padilla N, Achee NL, Conn JE: Microsatellite data suggest significant population structure and differentiation within the malaria vector Anopheles darlingi in Central and South America. BMC Ecol 2008, 8:1472-6785.
- [58]Molina-Cruz A, de Merida AM, Mills K, Rodriguez F, Schoua C, Yurrita MM, Molina E, Palmieri M, Black IVWC: Gene flow among Anopheles albimanus populations in Central America, South America, and the Caribbean assessed by microsatellites and mitochondrial DNA. Am J Trop Med Hyg 2004, 71:350-359.
- [59]Michel AP, Guelbeogo WM, Grushko O, Schemerhorn BJ, Kern M, Willard MB, Sagnon N'F, Costantini C, Besansky NJ: Molecular differentiation between chromosomally defined incipient species of Anopheles funestus. Insect Mol Biol 2005, 14:375-387.
- [60]Michel AP, Grushko O, Guelbeogo WM, Lobo NF, Sagnon N'F, Costantini C, Besansky NJ: Divergence with gene flow in Anopheles funestus from the Sudan savanna of Burkina Faso, West Africa. Genetics 2006, 173:1389-1395.
- [61]Dong XS, Zhou HN, Gong ZD, Dong LM, Wang XZ: Investigation of mosquito species in Yunnan Province with some new species. Chin J Vector Biol Control 2004, 5:186-188.
- [62]Jin ZZ, Ou XK: The diversity features of plant community types in the tropical rain forest vegetation of Xishuangbanna, Yunnan. Acta Bot Yunnan Suppl 1997, 1:1-30.
- [63]Zhu H, Xu ZH, Wang H, Li BG: Tropical rain forest fragmentation and its ecological and species diversity changes in southern Yunnan. Biol Conserv 2004, 13:1355-1372.
- [64]Liu X, Liu Q, Guo Y, Jiang J, Ren D, Zhou G, Zheng C, Liu J, Chen Y, Li H, Li H, Li Q: Random repeated cross sectional study on breeding site characterization of Anopheles sinensis larvae in distinct villages of Yongcheng City, People's Republic of China. Parasit Vectors 2012, 5:58. BioMed Central Full Text
- [65]Audley-Charles MG: Dispersal of Gondwanaland: relevance to evolution of the angiosperms. In Biogeographical Evolution of the Malay Archipelago. Edited by Whitemore TC. Oxford: Clarendon Press; 1987.
- [66]Ng’habi KR, Knols BG, Lee Y, Ferguson HM, Lanzaro GC: Population genetic structure of Anopheles arabiensis and Anopheles gambiae in a malaria endemic region of southern Tanzania. Malar J 2011, 10:289. BioMed Central Full Text
- [67]Ballard JWO, Whitlock MC: The incomplete natural history of mitochondria. Mol Ecol 2004, 13:729-744.