期刊论文详细信息
Particle and Fibre Toxicology
Nitric oxide maintains cell survival of Trichomonas vaginalis upon iron depletion
Petrus Tang1  Cheng-Hsun Chiu1  Yi-Kai Fang4  Jo-Hsuan Hsu4  Po-Jung Huang2  Kuo-Yang Huang3  Wei-Hung Cheng4 
[1] Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan;Bioinformatics Center, Chang Gung University, Kweishan, Taoyuan, Taiwan;Molecular Medicine Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan;Molecular Regulation and Bioinformatics Laboratory, Department of Parasitology, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
关键词: Cell survival;    Hydrogenosomal membrane potential;    Ubiquitin-proteasome system;    Arginine;    Nitric oxide;    Iron-deficiency;   
Others  :  1222170
DOI  :  10.1186/s13071-015-1000-5
 received in 2015-02-16, accepted in 2015-07-09,  发布年份 2015
PDF
【 摘 要 】

Background

Iron plays a pivotal role in the pathogenesis of Trichomonas vaginalis, the causative agent of highly prevalent human trichomoniasis. T. vaginalis resides in the vaginal region, where the iron concentration is constantly changing. Hence, T. vaginalis must adapt to variations in iron availability to establish and maintain an infection. The free radical signaling molecules reactive oxygen species (ROS) and reactive nitrogen species (RNS) have been proven to participate in iron deficiency in eukaryotes. However, little is known about the roles of these molecules in iron-deficient T. vaginalis.

Methods

T. vaginalis cultured in iron-rich and -deficient conditions were collected for all experiments in this study. Next generation RNA sequencing was conducted to investigate the impact of iron on transcriptome of T. vaginalis. The cell viabilities were monitored after the trophozoites treated with the inhibitors of nitric oxide (NO) synthase (L-NG-monomethyl arginine, L-NMMA) and proteasome (MG132). Hydrogenosomal membrane potential was measured using JC-1 staining.

Results

We demonstrated that NO rather than ROS accumulates in iron-deficient T. vaginalis. The level of NO was blocked by MG132 and L-NMMA, indicating that NO production is through a proteasome and arginine dependent pathway. We found that the inhibition of proteasome activity shortened the survival of iron-deficient cells compared with untreated iron-deficient cells. Surprisingly, the addition of arginine restored both NO level and the survival of proteasome-inhibited cells, suggesting that proteasome-derived NO is crucial for cell survival under iron-limited conditions. Additionally, NO maintains the hydrogenosomal membrane potential, a determinant for cell survival, emphasizing the cytoprotective effect of NO on iron-deficient T. vaginalis. Collectively, we determined that NO produced by the proteasome prolonged the survival of iron-deficient T. vaginalis via maintenance of the hydrogenosomal functions.

Conclusion

The findings in this study provide a novel role of NO in adaptation to iron-deficient stress in T. vaginalis and shed light on a potential therapeutic strategy for trichomoniasis.

【 授权许可】

   
2015 Cheng et al.

【 预 览 】
附件列表
Files Size Format View
20150805095344843.pdf 1351KB PDF download
Fig. 6. 42KB Image download
Fig. 5. 34KB Image download
Fig. 4. 11KB Image download
Fig. 3. 40KB Image download
Fig. 2. 19KB Image download
Fig. 1. 17KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Schwebke JR, Burgess D. Trichomoniasis. Clin Microbiol Rev. 2004; 17:794-803.
  • [2]Alderete JF, Provenzano D, Lehker MW. Iron mediates Trichomonas vaginalis resistance to complement lysis. Microb Pathog. 1995; 19:93-103.
  • [3]Alvarez-Sánchez ME, Solano-González E, Yañez-Gómez C, Arroyo R. Negative iron regulation of the CP65 cysteine proteinase cytotoxicity in Trichomonas vaginalis. Microbes Infect. 2007; 9:1597-605.
  • [4]Crouch ML, Benchimol M, Alderete JF. Binding of fibronectin by Trichomonas vaginalis is influenced by iron and calcium. Microb Pathog. 2001; 31:131-44.
  • [5]Sehgal R, Goyal K, Sehgal A. Trichomoniasis and lactoferrin: future prospects. Infect Dis Obstet Gynecol. 2012; 2012:1-8.
  • [6]Figueroa-Angulo EE, Rendón-Gandarilla FJ, Puente-Rivera J, Calla-Choque JS, Cárdenas-Guerra RE, Ortega-López J et al.. The effects of environmental factors on the virulence of Trichomonas vaginalis. Microb Infect. 2012; 14:1411-7.
  • [7]Heath JL, Weiss JM, Lavau CP, Wechsler DS. Iron deprivation in cancer--potential therapeutic implications. Nutrients. 2013; 5:2836-59.
  • [8]Vale-Costa S, Gomes-Pereira S, Teixeira CM, Rosa G, Rodrigues PN, Tomás A et al.. Iron overload favors the elimination of Leishmania infantum from mouse tissues through interaction with reactive oxygen and nitrogen species. PLoS Negl Trop Dis. 2013; 7: Article ID e2061
  • [9]Storr SJ, Woolston CM, Zhang Y, Martin SG. Redox environment, free radical, and oxidative DNA damage. Antioxid Redox Sign. 2013; 18:2399-408.
  • [10]Gould SB, Woehle C, Kusdian G, Landan G, Tachezy J, Zimorski V et al.. Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int J Parasitol. 2013; 43:707-19.
  • [11]Chakraborty S, Tewari S, Sharma RK, Narula SC, Ghalaut PS, Ghalaut V. Impact of iron deficiency anemia on chronic periodontitis and superoxide dismutase activity: a cross-sectional study. J Periodontal Implant Sci. 2014; 44:57-64.
  • [12]Bashan N, Kovsan J, Kachko I, Ovadia H, Rudich A. Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev. 2009; 89:27-71.
  • [13]Makiuchi T, Nozaki T. Highly divergent mitochondrion-related organelles in anaerobic parasitic protozoa. Biochimie. 2013; 100:1-15.
  • [14]Schneider RE, Brown MT, Shiflett AM, Dyall SD, Hayes RD, Xie Y et al.. The Trichomonas vaginalis hydrogenosome proteome is highly reduced relative to mitochondria, yet complex compared with mitosomes. Int J Parasitol. 2011; 41:1421-34.
  • [15]Beltrán NC, Horváthová L, Jedelský PL, Šedinová M, Rada P, Marcinčiková M et al.. Iron-induced changes in the proteome of Trichomonas vaginalis hydrogenosomes. PLoS One. 2013; 8: Article ID e65148
  • [16]Kim Y-S, Song H-O, Choi I-H, Park S-J, Ryu J-S. Hydrogenosomal activity of Trichomonas vaginalis cultivated under different iron conditions. Korean J Parasitol. 2006; 44:373-8.
  • [17]Chose O, Noël C, Gerbod D, Brenner C, Viscogliosi E, Roseto A. A form of cell death with some features resembling apoptosis in the amitochondrial unicellular organism Trichomonas vaginalis. Exp Cell Res. 2002; 276:32-9.
  • [18]Yoboue ED, Devin A. Reactive oxygen species-mediated control of mitochondrial biogenesis. Int J Cell Biol. 2012; 2012:403870.
  • [19]Nisoli E, Clementi E, Paolucci C, Cozzi V, Tonello C, Sciorati C et al.. Mitochondrial biogenesis in mammals: the role of endogenous nitric oxide. Science. 2003; 299:896-9.
  • [20]Diamond LS, Clark CG, Cunnick CC. YI-S, a casein-free medium for axenic cultivation of Entamoeba histolytica, related Entamoeba, Giardia intestinalis and Trichomonas vaginalis. J Eukaryot Microbiol. 1995; 42:277-8.
  • [21]Horváthová L, Safarikova L, Basler M, Hrdý I, Campo NB, Shin J-W et al.. Transcriptomic identification of iron-regulated and iron-independent gene copies within the heavily duplicated Trichomonas vaginalis genome. Genome Biol Evol. 2012; 4:905-17.
  • [22]Huang K-Y, Huang P-J, Ku F-M, Lin R, Alderete JF, Tang P. Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun. 2012; 80:3900-11.
  • [23]Husain A, Sato D, Jeelani G, Soga T, Nozaki T. Dramatic increase in glycerol biosynthesis upon oxidative stress in the anaerobic protozoan parasite Entamoeba histolytica. PLoS Negl Trop Dis. 2012; 6: Article ID e1831
  • [24]Huang K-Y, Chen Y-YM, Fang Y-K, Cheng W-H, Cheng C-C, Chen Y-C et al.. Adaptive responses to glucose restriction enhance cell survival, antioxidant capability, and autophagy of the protozoan parasite Trichomonas vaginalis. Biochim Biophys Acta. 1840; 2014:53-64.
  • [25]Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S et al.. GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res. 2009; 37:D526-30.
  • [26]Mallo N, Lamas J, Leiro JM. Hydrogenosome metabolism is the key target for antiparasitic activity of resveratrol against Trichomonas vaginalis. Antimicrob Agents CH. 2013; 57:2476-84.
  • [27]Lehker MW, Alderete JF. Iron regulates growth of Trichomonas vaginalis and the expression of immunogenic trichomonad proteins. Mol Microbiol. 1992; 6:123-32.
  • [28]De Jesus JB, Cuervo P, Junqueira M, Britto C, Silva-Filho FCE, Soares MJ et al.. A further proteomic study on the effect of iron in the human pathogen Trichomonas vaginalis. Proteomics. 2007; 7:1961-72.
  • [29]Boutrin M-C, Wang C, Aruni W, Li X, Fletcher HM. Nitric oxide stress resistance in Porphyromonas gingivalis is mediated by a putative hydroxylamine reductase. J Bacteriol. 2012; 194:1582-92.
  • [30]Justino MC, Baptista JM, Saraiva LM. Di-iron proteins of the Ric family are involved in iron-sulfur cluster repair. Biometals. 2009; 22:99-108.
  • [31]Yurgel SN, Rice J, Kahn ML. Transcriptome analysis of the role of GlnD/GlnBK in nitrogen stress adaptation by Sinorhizobium meliloti Rm1021. PLoS One. 2013; 8: Article ID e58028
  • [32]Harris KM, Goldberg B, Biagini GA, Lloyd D. Trichomonas vaginalis and Giardia intestinalis produce nitric oxide and display NO-synthase activity. J Eukaryot Microbiol. 2006; 53:S182-3.
  • [33]Simon A, Karbach S, Habermeier A, Closs EI. Decoding the substrate supply to human neuronal nitric oxide synthase. PLoS One. 2013; 8: Article ID e67707
  • [34]Nisoli E, Carruba MO. Nitric oxide and mitochondrial biogenesis. J Cell Sci. 2006; 119:2855-62.
  • [35]Ly JD, Grubb DR, Lawen A. The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis. 2003; 8:115-28.
  • [36]Vanácová S, Rasoloson D, Rázga J, Hrdy I, Kulda J, Tachezy J. Iron-induced changes in pyruvate metabolism of Tritrichomonas foetus and involvement of iron in expression of hydrogenosomal proteins. Microbiology. 2001; 147:53-62.
  • [37]Pacheco-Yepez J, Jarillo-Luna RA, Gutierrez-Meza M, Abarca-Rojano E, Larsen BA, Campos-Rodriguez R. Peroxynitrite and peroxiredoxin in the pathogenesis of experimental amebic liver abscess. Biomed Res Int. 2014; 2014:324230.
  • [38]Pantopoulos K, Hentze MW. Nitric oxide signaling to iron-regulatory protein: direct control of ferritin mRNA translation and transferrin receptor mRNA stability in transfected fibroblasts. Proc Natl Acad Sci U S A. 1995; 92:1267-71.
  • [39]Graziano M, Lamattina L. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. Plant J. 2007; 52:949-60.
  • [40]Sun B, Jing Y, Chen K, Song L, Chen F, Zhang L. Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). J Plant Physiol. 2007; 164:536-43.
  • [41]Reif DW, Simmons RD. Nitric oxide mediates iron release from ferritin. Arch Biochem Biophys. 1990; 283:537-41.
  • [42]Maupin-Furlow J. Proteasomes and protein conjugation across domains of life. Nat Rev Microbiol. 2012; 10:100-11.
  • [43]Suraweera A, Münch C, Hanssum A, Bertolotti A. Failure of amino acid homeostasis causes cell death following proteasome inhibition. Mol Cell. 2012; 48:242-53.
  • [44]Yarlett N, Martinez MP, Moharrami MA, Tachezy J. The contribution of the arginine dihydrolase pathway to energy metabolism by Trichomonas vaginalis. Mol Biochem Parasitol. 1996; 78:117-25.
  • [45]Lucas KA, Pitari GM, Kazerounian S, Ruiz-Stewart I, Park J, Schulz S et al.. Guanylyl cyclases and signaling by cyclic GMP. Pharmacol Rev. 2000; 52:375-414.
  • [46]Saini AS, Shenoy GN, Rath S, Bal V, George A. Inducible nitric oxide synthase is a major intermediate in signaling pathways for the survival of plasma cells. Nat Immunol. 2014; 15:275-82.
  • [47]Diaz CA, Allocco J, Powles MA, Yeung L, Donald RGK, Anderson JW et al.. Characterization of Plasmodium falciparum cGMP-dependent protein kinase (PfPKG): antiparasitic activity of a PKG inhibitor. Mol Biochem Parasitol. 2006; 146:78-88.
  • [48]Donald RGK, Allocco J, Singh SB, Nare B, Salowe SP, Wiltsie J et al.. Toxoplasma gondii cyclic GMP-dependent kinase: chemotherapeutic targeting of an essential parasite protein kinase. Eukaryot Cell. 2002; 1:317-28.
  文献评价指标  
  下载次数:23次 浏览次数:27次