期刊论文详细信息
Proteome Science
Comparative proteomics between natural Microcystis isolates with a focus on microcystin synthesis
Octávio L Franco2  Beatriz S Magalhães3  Ângela Mehta1  Wérika C Araújo3  Bernardo A Petriz3  Ângela Tonietto3 
[1] Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil;Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil;Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Pós Graduação em Ciências Genômicas e Biotecnologia, SGAN 916 Norte Av. W5, Brasília, DF, Brazil
关键词: Proteome;    Cyanotoxin;    Microcystis aeruginosa;    Cyanobacteria;   
Others  :  817259
DOI  :  10.1186/1477-5956-10-38
 received in 2012-01-10, accepted in 2012-05-09,  发布年份 2012
PDF
【 摘 要 】

Background

Microcystis aeruginosa is a species of cyanobacteria commonly found in a number of countries and frequently related to animal poisoning episodes due to its capacity to produce the cyanotoxin known as microcystin. Despite vast literature on microcystin structures and their deleterious effects, little is known about its synthesis by cyanobacteria. Therefore, this study used proteomic tools to compare two M. aeruginosa strains, contrasting them for microcystin production.

Results

2-DE gels were performed and 30 differential protein spots were chosen. Among them, 11 protein spots were unique in the toxin producing strain and 8 in the non-toxin producing strain, and 14 protein spots were shown on both 2-DE gels but expressed differently in intensity. Around 57% of the tandem mass spectrometry identified proteins were related to energy metabolism, with these proteins being up-regulated in the toxin producing strain.

Conclusions

These data suggest that the presence of higher quantities of metabolic enzymes could be related to microcystin metabolism in comparison to the non-toxin producing strain. Moreover, it was suggested that the production of microcystin could also be related to other proteins than those directly involved in its production, such as the enzymes involved in the Calvin cycle and glycolysis.

【 授权许可】

   
2012 Tonietto et al.; licensee BioMed Central Ltd; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140710234209211.pdf 1484KB PDF download
Figure 4. 67KB Image download
Figure 3. 73KB Image download
Figure 2. 92KB Image download
Figure 1. 84KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Baldia SF, Conaco MCG, Nishijima T, Imanishi S, Harada K-I: Microcystin production during algal bloom occurrence in Laguna de Bay, the Philippines. Fish Sci 2003, 69:110-116.
  • [2]Bormans M, Ford PW, Fabbro L, Hancock G: Onset and persistence of cyanobacterial blooms in a large impounded tropical river, Australia. Mar Freshw Res 2004, 55:1-15.
  • [3]Lehman PW, Boyer G, Hall C, Waller S, Gehrts K: Distribution and toxicity of a new colonial Microcystis aeruginosa bloom in the San Francisco Bay Estuary, California. Hydrobiologia 2005, 541:87-99.
  • [4]Rolland A, Bird DF, Giani A: Seasonal changes in composition of the cyanobacterial community and the occurrence of hepatotoxic blooms in the eastern townships, Québec, Canada. J Plankton Res 2005, 27:683-694.
  • [5]Costa IAS, Azevedo SMFO, Senna PAC, Bernardo RR, Costa SM, Chellappaellappa NT: Occurrence of toxin-producing cyanobacteria blooms in a brazilian semiarid reservoir. Braz J Biol 2006, 66:211-219.
  • [6]Francis G: Poisonous Australian lake Nature. 1878, 18.
  • [7]Andersen RJ, Luu HA, Chen DZX, Holmes CFB: Chemical and biological evidence links microcystins to salmon ‘netpen liver disease’. Toxicon 1993, 31:1315-1323.
  • [8]Mez K, Hanselmann K, Naegeli H, Preisig H: Protein phosphatase-inhibiting activity in cyanobacteria from alpine lakes in Switzerland. Phycologia 1996, 36:133-139.
  • [9]Carmichael WW: Health effects of toxin-producing cyanobacteria: "The CyanoHABs". Hum Ecol Risk Assess 2001, 7:1393-1407.
  • [10]Azevedo SM, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK: Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 2002, 181–182:441-446.
  • [11]Carmichael WW: The toxins of cyanobacteria. Sci Am 1994, 270:78-86.
  • [12]Welker M, von Dohren H: Cyanobacterial peptides - nature's own combinatorial biosynthesis. FEMS Microbiol Rev 2006, 30:530-563.
  • [13]Song L, Sano T, Li R, Watanabe MM, Liu Y, Kaya K: Microcystin production of Microcystis viridis (cyabobacteria) under different culture conditions. Phycol Res 1998, 46:19-23.
  • [14]Sivonen K, Jones G: Cyanobacterial Toxins. In Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Edited by Chorus IB. J WHO; 1999:400.
  • [15]Lee SJ, Jang MH, Kim HS, Yoon BD, Oh HM: Variation of microcystin content of microcystis aeruginosa relative to medium N:P ratio and growth stage. J Appl Microbiol 2000, 89:323-329.
  • [16]Kaneko T, Nakajima N, Okamoto S, Suzuki I, Tanabe Y, Tamaoki M, Nakamura Y, Kasai F, Watanabe A, Kawashima K, et al.: Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Res 2007, 14:247-256.
  • [17]Tillett D, Dittmann E, Erhard M, von Dohren H, Borner T, Neilan BA: Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide-polyketide synthetase system. Chem Biol 2000, 7:753-764.
  • [18]Christiansen G, Fastner J, Erhard M, Borner T, Dittmann E: Microcystin biosynthesis in planktothrix: genes, evolution, and manipulation. J Bacteriol 2003, 185:564-572.
  • [19]Rouhiainen L, Vakkilainen T, Siemer BL, Buikema W, Haselkorn R, Sivonen K: Genes coding for hepatotoxic heptapeptides (microcystins) in the cyanobacterium Anabaena strain 90. Appl Environ Microbiol 2004, 70:686-692.
  • [20]Fulda S, Huang F, Nilsson F, Hagemann M, Norling B: Proteomics of Synechocystis sp. strain PCC 6803. Identification of periplasmic proteins in cells grown at low and high salt concentrations. Eur J Biochem 2000, 267:5900-5907.
  • [21]Huang F, Hedman E, Funk C, Kieselbach T, Schroder WP, Norling B: Isolation of outer membrane of Synechocystis sp. PCC 6803 and its proteomic characterization. Mol Cell Proteomics 2004, 3:586-595.
  • [22]Huang F, Parmryd I, Nilsson F, Persson AL, Pakrasi HB, Andersson B, Norling B: Proteomics of Synechocystis sp. strain PCC 6803: identification of plasma membrane proteins. Mol Cell Proteomics 2002, 1:956-966.
  • [23]Srivastava R, Pisareva T, Norling B: Proteomic studies of the thylakoid membrane of Synechocystis sp. PCC 6803. Proteomics 2005, 5:4905-4916.
  • [24]Pisareva T, Kwon J, Oh J, Kim S, Ge C, Wieslander A, Choi JS, Norling B: Model for membrane organization and protein sorting in the cyanobacterium Synechocystis sp. PCC 6803 inferred from proteomics and multivariate sequence analyses. J Proteome Res 2011, 10:3617-3631.
  • [25]Simon WJ, Hall JJ, Suzuki I, Murata N, Slabas AR: Proteomic study of the soluble proteins from the unicellular cyanobacterium Synechocystis sp. PCC6803 using automated matrix-assisted laser desorption/ionization-time of flight peptide mass fingerprinting. Proteomics 2002, 2:1735-1742.
  • [26]Kurian D, Phadwal K, Maenpaa P: Proteomic characterization of acid stress response in Synechocystis sp. PCC 6803. Proteomics 2006, 6:3614-3624.
  • [27]Barrios-Llerena ME, Reardon KF, Wright PC: 2-DE proteomic analysis of the model cyanobacterium Anabaena variabilis. Electrophoresis 2007, 28:1624-1632.
  • [28]Moslavac S, Bredemeier R, Mirus O, Granvogl B, Eichacker LA, Schleiff E: Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J Proteome Res 2005, 4:1330-1338.
  • [29]Gonzalez A, Bes MT, Peleato ML, Fillat MF: Unravelling the regulatory function of FurA in Anabaena sp. PCC 7120 through 2-D DIGE proteomic analysis. J Proteomics 2011, 74:660-671.
  • [30]Cardona T, Battchikova N, Agervald A, Zhang P, Nagel E, Aro EM, Styring S, Lindblad P, Magnuson A: Isolation and characterization of thylakoid membranes from the filamentous cyanobacterium Nostoc punctiforme. Physiol Plant 2007, 131:622-634.
  • [31]Hunsucker SW, Klage K, Slaughter SM, Potts M, Helm RF: A preliminary investigation of the Nostoc punctiforme proteome. Biochem Biophys Res Commun 2004, 317:1121-1127.
  • [32]Srivastava AK, Bhargava P, Thapar R, Rai LC: Salinity-induced physiological and proteomic changes in Anabaena doliolum. Environ Exp Bot 2008, 64:49-57.
  • [33]Pandhal J, Ow SW, Wright PC, Biggs CA: Comparative proteomics study of salt tolerance between a nonsequenced extremely halotolerant cyanobacterium and its mildly halotolerant relative using in vivo metabolic labeling and in vitro isobaric labeling. J Proteome Res 2009, 8:818-828.
  • [34]Choi J-S, Kim D-S, Lee J, Kim S-J, Eady RA: Proteomic analisys of ligth-induced proteins in Synechocystis sp. PCC 6803: Identification of proteins separated by 2D- PAGE using N-terminal sequencing and MALDI-TOF MS. Mol Cells 2000, 10:705-711.
  • [35]Gao Y, Xiong W, Li XB, Gao CF, Zhang YL, Li H, Wu QY: Identification of the proteomic changes in Synechocystis sp. PCC 6803 following prolonged UV-B irradiation. J Exp Bot 2009, 60:1141-1154.
  • [36]Hongsthong A, Sirijuntarut M, Prommeenate P, Lertladaluck K, Porkaew K, Cheevadhanarak S, Tanticharoen M: Proteome analysis at the subcellular level of the cyanobacterium Spirulina platensis in response to low-temperature stress conditions. FEMS Microbiol Lett 2008, 288:92-101.
  • [37]Zhang LF, Yang HM, Cui SX, Hu J, Wang J, Kuang TY, Norling B, Huang F: Proteomic analysis of plasma membranes of cyanobacterium Synechocystis sp. Strain PCC 6803 in response to high pH stress. J Proteome Res 2009, 8:2892-2902.
  • [38]Ekman M, Tollback P, Bergman B: Proteomic analysis of the cyanobacterium of the Azolla symbiosis: identity, adaptation, and NifH modification. J Exp Bot 2008, 59:1023-1034.
  • [39]Ekman M, Tollback P, Klint J, Bergman B: Protein expression profiles in an endosymbiotic cyanobacterium revealed by a proteomic approach. Mol Plant Microbe Interact 2006, 19:1251-1261.
  • [40]Dittmann E, Erhard M, Kaebernick M, Scheler C, Neilan BA, von Dohren H, Borner T: Altered expression of two light-dependent genes in a microcystin-lacking mutant of Microcystis aeruginosa PCC 7806. Microbiology 2001, 147:3113-3119.
  • [41]Alexova R, Haynes PA, Ferrari BC, Neilan BA: Comparative protein expression in different strains of the bloom-forming cyanobacterium Microcystis aeruginosa. Mol Cell Proteomics 2011, 10:M110. 003749
  • [42]Arment AR, Carmichael WW: Evidence that microcystin is a thio-template product. J Phycol 1996, 32:591-597.
  • [43]Bateman KP, Thibault P, Douglas DJ, White RL: Mass spectral analyses of microcystins from toxic cyanobacteria using on-line chromatographic and electrophoretic separations. J Chromatogr A 1995, 712:253-268.
  • [44]Yuan M, Namikoshi M, Otsuki A, Rinehart KL, Sivonen K, Watanabe MF: Low-energy collisionally activated decomposition and structural characterization of cyclic heptapeptide microcystins by electrospray ionization mass spectrometry. J Mass Spectrom 1999, 34:33-43.
  • [45]Oksanen I, Jokela J, Fewer DP, Wahlsten M, Rikkinen J, Sivonen K: Discovery of rare and highly toxic microcystins from lichen-associated cyanobacterium Nostoc sp. strain IO-102-I. Appl Environ Microbiol 2004, 70:5756-5763.
  • [46]Funari E, Testai E: Human health risk assessment related to cyanotoxins exposure. Crit Rev Toxicol 2008, 38:97-125.
  • [47]Koksharova OA, Klint I, Rasmussen U: The first protein map of Synechococcus sp. strain PCC 7942. Mikrobiologiia 2006, 75:765-774.
  • [48]Klint J, Ran L, Rasmussen U, Bergman B: Identification of developmentally regulated proteins in cyanobacterial hormogonia using a proteomic approach. Symbiosis 2006, 41:87-95.
  • [49]Degrelle SA, Le Blomberg A, Garrett WM, Li RW, Talbot NC: Comparative proteomic and regulatory network analyses of the elongating pig conceptus. Proteomics 2009, 9:2678-2694.
  • [50]Richardson MR, Lai X, Dixon JL, Sturek M, Witzmann FA: Diabetic dyslipidemia and exercise alter the plasma low-density lipoproteome in Yucatan pigs. Proteomics 2009, 9:2468-2483.
  • [51]Wu Z, Zhang W, Lu C: Comparative proteome analysis of secreted proteins of Streptococcus suis serotype 9 isolates from diseased and healthy pigs. Microb Pathog 2008, 45:159-166.
  • [52]Stead D, Findon H, Yin Z, Walker J, Selway L, Cash P, Dujon BA, Hennequin C, Brown AJ, Haynes K: Proteomic changes associated with inactivation of the Candida glabrata ACE2 virulence-moderating gene. Proteomics 2005, 5:1838-1848.
  • [53]Chromy BA, Choi MW, Murphy GA, Gonzales AD, Corzett CH, Chang BC, Fitch JP, McCutchen-Maloney SL: Proteomic characterization of Yersinia pestis virulence. J Bacteriol 2005, 187:8172-8180.
  • [54]Lan CY, Newport G, Murillo LA, Jones T, Scherer S, Davis RW, Agabian N: Metabolic specialization associated with phenotypic switching in Candidaalbicans. Proc Natl Acad Sci U S A 2002, 99:14907-14912.
  • [55]Cavet JS, Borrelly GP, Robinson NJ: Zn, Cu and Co in cyanobacteria: selective control of metal availability. FEMS Microbiol Rev 2003, 27:165-181.
  • [56]Coleman JRI: Carbonic anhydrase and its role in photosynthesis. In Photosynthesis: Physiology and Metabolism Edited by Leegood RCS, Caemmerer TD, Kluwer S. 2004, 625.
  • [57]Welsh EA, Liberton M, Stockel J, Loh T, Elvitigala T, Wang C, Wollam A, Fulton RS, Clifton SW, Jacobs JM, et al.: The genome of Cyanothece 51142, a unicellular diazotrophic cyanobacterium important in the marine nitrogen cycle. Proc Natl Acad Sci U S A 2008, 105:15094-15099.
  • [58]Morand LZ, Cheng RH, Krogmann DW, Ki Ho K: Soluble electron transfer catalysts of cyanobacteria. 2004.
  • [59]Hosoya-Matsuda N, Motohashi K, Yoshimura H, Nozaki A, Inoue K, Ohmori M, Hisabori T: Anti-oxidative stress system in cyanobacteria. Significance of type II peroxiredoxin and the role of 1-Cys peroxiredoxin in Synechocystis sp. strain PCC 6803. J Biol Chem 2005, 280:840-846.
  • [60]Dietz KJ, Stork T, Finkemeier I, Lamkemeyer P, Li W-X, El-Tayeb MA, Michel K-P, Pistorius E, Baier M: The Role of Peroxiredoxins in Oxygenic Photosynthesis of Cyanobacteria and Higher Plants: Peroxide Detoxification or Redox Sensing? Edited by Demmig-Adams B, Adams WW III, Matoo AK. Springer; 2008.
  • [61]Regelsberger G, Laaha U, Dietmann D, Ruker F, Canini A, Grilli-Caiola M, Furtmuller PG, Jakopitsch C, Peschek GA, Obinger C: The iron superoxide dismutase from the filamentous cyanobacterium Nostoc PCC 7120. Localization, overexpression, and biochemical characterization. J Biol Chem 2004, 279:44384-44393.
  • [62]Taroncher-Oldenburg G, Nishina K, Stephanopoulos G: Identification and analysis of the polyhydroxyalkanoate-specific beta-ketothiolase and acetoacetyl coenzyme A reductase genes in the cyanobacterium Synechocystis sp. strain PCC6803. Appl Environ Microbiol 2000, 66:4440-4448.
  • [63]Hanikenne M, Kramer U, Demoulin V, Baurain D: A comparative inventory of metal transporters in the green alga Chlamydomonas reinhardtii and the red alga Cyanidioschizon merolae. Plant Physiol 2005, 137:428-446.
  • [64]Hongsthong A, Sirijuntarut M, Yutthanasirikul R, Senachak J, Kurdrid P, Cheevadhanarak S, Tanticharoen M: Subcellular proteomic characterization of the high-temperature stress response of the cyanobacterium Spirulina platensis. Proteome Sci 2009, 7:33. BioMed Central Full Text
  • [65]Amnuaykanjanasin A, Daub ME: The ABC transporter ATR1 is necessary for efflux of the toxin cercosporin in the fungus Cercospora nicotianae. Fungal Genet Biol 2009, 46:146-158.
  • [66]Gerbersdorf SU: An advanced technique for immuno-labelling of microcystins in cryosectioned cells of Microcystis aeruginosa PCC 7806 (cyanobacteria): implementations of an experiment with varying light scenarios and culture densities. Toxicon 2006, 47:218-228.
  • [67]Young FM, Thomson C, Metcalf JS, Lucocq JM, Codd GA: Immunogold localisation of microcystins in cryosectioned cells of Microcystis. J Struct Biol 2005, 151:208-214.
  • [68]Jungmann D, Benndorf J: Toxicity to Daphnia of a compound extracted from laboratory and natural Microcystis spp., and the role of microcystins. Freshw Biol 1994, 32:13-20.
  • [69]Lampert W: Further studies on the inhibitory effect of toxic blue-green Microcystis aeruginosa on the filtering rate of zooplankton. Arch Hydrobiol 1982, 95:207-220.
  • [70]Meibner K, Dittmann E, Biirner T: Toxic and non-toxic strains of the cyanobacterium Microcystis aeruginosa contain sequences homologous to peptide synthetase genes. FEMS Microbiol Lett 1996, 135:295-303.
  • [71]Kardinaal WEA, Tonk L, Janse I, Hol S, Slot P, Huisman J, Visser PM: Competition for light between toxic and nontoxic strains of the harmful cyanobacterium microcystis. Appl Environ Microbiol 2007, 73:2939-2946.
  • [72]Christiansen G, Molitor C, Philmus B, Kurmayer B: Nontoxic strains of cyanobacteria are the result of major gene deletion events induced by a transposable element. Mol Biol Evol 2008, 25(8):1695-1704.
  • [73]Harada K-i, Kondo F, Lawton L: Laboratory analysis of cyanotoxins. In Toxic Cyanobacteria in Water: A guide to their public health consequences, monitoring and management. Edited by Chorus IB. J. WHO; 1999:400.
  • [74]Shevchenko A, Wilm M, Vorm O, Mann M: Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels. Anal Chem 1996, 68:850-858.
  文献评价指标  
  下载次数:18次 浏览次数:21次