期刊论文详细信息
Proteome Science
Comparative proteomics between natural Microcystis isolates with a focus on microcystin synthesis
Research
Ângela Tonietto1  Wérika C Araújo1  Bernardo A Petriz1  Beatriz S Magalhães1  Octávio L Franco2  Ângela Mehta3 
[1] Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Pós Graduação em Ciências Genômicas e Biotecnologia, SGAN 916 Norte Av. W5, Brasília, DF, Brazil;Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Pós Graduação em Ciências Genômicas e Biotecnologia, SGAN 916 Norte Av. W5, Brasília, DF, Brazil;Departamento de Biologia, Universidade Federal de Juiz de Fora, Juiz de Fora, MG, Brazil;Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil;
关键词: Cyanobacteria;    Microcystis aeruginosa;    Cyanotoxin;    Proteome;   
DOI  :  10.1186/1477-5956-10-38
 received in 2012-01-10, accepted in 2012-05-09,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundMicrocystis aeruginosa is a species of cyanobacteria commonly found in a number of countries and frequently related to animal poisoning episodes due to its capacity to produce the cyanotoxin known as microcystin. Despite vast literature on microcystin structures and their deleterious effects, little is known about its synthesis by cyanobacteria. Therefore, this study used proteomic tools to compare two M. aeruginosa strains, contrasting them for microcystin production.Results2-DE gels were performed and 30 differential protein spots were chosen. Among them, 11 protein spots were unique in the toxin producing strain and 8 in the non-toxin producing strain, and 14 protein spots were shown on both 2-DE gels but expressed differently in intensity. Around 57% of the tandem mass spectrometry identified proteins were related to energy metabolism, with these proteins being up-regulated in the toxin producing strain.ConclusionsThese data suggest that the presence of higher quantities of metabolic enzymes could be related to microcystin metabolism in comparison to the non-toxin producing strain. Moreover, it was suggested that the production of microcystin could also be related to other proteins than those directly involved in its production, such as the enzymes involved in the Calvin cycle and glycolysis.

【 授权许可】

Unknown   
© Tonietto et al.; licensee BioMed Central Ltd; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311101875604ZK.pdf 1391KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  • [53]
  • [54]
  • [55]
  • [56]
  • [57]
  • [58]
  • [59]
  • [60]
  • [61]
  • [62]
  • [63]
  • [64]
  • [65]
  • [66]
  • [67]
  • [68]
  • [69]
  • [70]
  • [71]
  • [72]
  • [73]
  • [74]
  文献评价指标  
  下载次数:4次 浏览次数:2次