期刊论文详细信息
Journal of Neuroinflammation
Impact of intravenous immunoglobulin on the dopaminergic system and immune response in the acute MPTP mouse model of Parkinson’s disease
Frédéric Calon3  Renée Bazin2  Francesca Cicchetti1  Janelle Drouin-Ouellet1  Isabelle Paré2  Mélanie Bousquet3  Isabelle St-Amour2 
[1] Département de Psychiatrie & Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada, G1V 0A6;Département de Recherche et Développement, Héma-Québec, Québec, QC, Canada , G1V 5C3;Faculté de Pharmacie, Université Laval, Québec, QC, Canada , G1V 0A6
关键词: Dopamine;    MPTP;    Neurodegeneration;    Immunity;    Parkinson’s disease;    Intravenous immunoglobulin;   
Others  :  1160208
DOI  :  10.1186/1742-2094-9-234
 received in 2012-05-25, accepted in 2012-09-16,  发布年份 2012
PDF
【 摘 要 】

Intravenous immunoglobulin (IVIg) is a blood-derived product, used for the treatment of immunodeficiency and autoimmune diseases. Since a range of immunotherapies have recently been proposed as a therapeutic strategy for Parkinson’s disease (PD), we investigated the effects of an IVIg treatment in a neurotoxin-induced animal model of PD. Mice received four injections of MPTP (15 mg/kg) at 2-hour intervals followed by a 14-day IVIg treatment, which induced key immune-related changes such as increased regulatory T-cell population and decreased CD4+/CD8+ ratio. The MPTP treatment induced significant 80% and 84% decreases of striatal dopamine concentrations (P < 0.01), as well as 33% and 40% reductions in the number of nigral dopaminergic neurons (P < 0.001) in controls and IVIg-treated mice, respectively. Two-way analyses of variance further revealed lower striatal tyrosine hydroxylase protein levels, striatal homovanillic acid concentrations and nigral dopaminergic neurons (P < 0.05) in IVIg-treated animals. Collectively, our results fail to support a neurorestorative effect of IVIg on the nigrostriatal system in the MPTP-treated mice and even suggest a trend toward a detrimental effect of IVIg on the dopaminergic system. These preclinical data underscore the need to proceed with caution before initiating clinical trials of IVIg in PD patients.

【 授权许可】

   
2012 St-Amour et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410095814370.pdf 1916KB PDF download
Figure 7. 116KB Image download
Figure 6. 88KB Image download
Figure 5. 75KB Image download
Figure 4. 74KB Image download
Figure 3. 103KB Image download
Figure 2. 133KB Image download
Figure 1. 117KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Lofrumento DD, Saponaro C, Cianciulli A, De Nuccio F, Mitolo V, Nicolardi G, Panaro MA: MPTP-induced neuroinflammation increases the expression of pro-inflammatory cytokines and their receptors in mouse brain. Neuroimmunomodulation 2011, 18:79-88.
  • [2]Vroon A, Drukarch B, Bol JGJM, Cras P, Brevé JJP, Allan SM, Relton JK, Hoogland PVJM, Van Dam AM: Neuroinflammation in Parkinson’s patients and MPTP-treated mice is not restricted to the nigrostriatal system: microgliosis and differential expression of interleukin-1 receptors in the olfactory bulb. Exp Gerontol 2007, 42:762-771.
  • [3]Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC: Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 1994, 172:151-154.
  • [4]Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T: Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci Lett 1995, 193:129-132.
  • [5]Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T: Tumor necrosis factor-alpha (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994, 165:208-210.
  • [6]Mogi M, Kondo T, Mizuno Y, Nagatsu T: p53 protein, interferon-gamma, and NF-Kb levels are elevated in the parkinsonian brain. Neurosci Lett 2007, 414:94-97.
  • [7]Scalzo P, Kummer A, Cardoso F, Teixeira AL: Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett 2010, 468:56-58.
  • [8]Scalzo P, Kummer A, Cardoso F, Teixeira AL: Increased serum levels of soluble tumor necrosis factor-alpha receptor-1 in patients with Parkinson’s disease. J Neuroimmunol 2009, 216:122-125.
  • [9]Stypula G, Kunert-Radek J, Stepien H, Zylinska K, Pawlikowski M: Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with parkinson’s disease. Neuroimmunomodulation 1996, 3:131-134.
  • [10]Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW: Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 1999, 100:34-41.
  • [11]Varani K, Vincenzi F, Tosi A, Gessi S, Casetta I, Granieri G, Fazio P, Leung E, MacLennan S, Granieri E, Borea PA: A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson’s disease. FASEB J 2010, 24:587-598.
  • [12]Nicoletti A, Fagone P, Donzuso G, Mangano K, Dibilio V, Caponnetto S, Bendtzen K, Zappia M, Nicoletti F: Parkinson’s disease is associated with increased serum levels of macrophage migration inhibitory factor. Cytokine 2011, 55:165-167.
  • [13]Hofmann KW, Schuh AFS, Saute J, Townsend R, Fricke D, Leke R, Souza DO, Portela LV, Chaves MLF, Rieder CRM: Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem Res 2009, 34:1401-1404.
  • [14]Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay J-M, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S: Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 2008, 119:182-192.
  • [15]Dodel R, Neff F, Noelker C, Pul R, Du Y, Bacher M, Oertel W: Intravenous immunoglobulins as a treatment for Alzheimer’s disease: rationale and current evidence. Drugs 2010, 70:513-528.
  • [16]Stein MR, Nelson RP, Church JA, Wasserman RL, Borte M, Vermylen C, Bichler J: Safety and efficacy of Privigen, a novel 10% liquid immunoglobulin preparation for intravenous use, in patients with primary immunodeficiencies. J Clin Immunol 2009, 29:137-144.
  • [17]Ballow M, Berger M, Bonilla FA, Buckley RH, Cunningham-Rundles CH, Fireman P, Kaliner M, Ochs HD, Skoda-Smith S, Sweetser MT, Taki H, Lathia C: Pharmacokinetics and tolerability of a new intravenous immunoglobulin preparation, IGIV-C, 10% (Gamunex, 10%). Vox Sang 2003, 84:202-210.
  • [18]Roifman CM, Schroeder H, Berger M, Sorensen R, Ballow M, Buckley RH, Gewurz A, Korenblat P, Sussman G, Lemm G: Comparison of the efficacy of IGIV-C, 10% (caprylate/chromatography) and IGIV-SD, 10% as replacement therapy in primary immune deficiency. Int Immunopharmacol 2003, 3:1325-1333.
  • [19]Lebing W, Remington KM, Schreiner C, Paul HI: Properties of a new intravenous immunoglobulin (IGIV-C, 10%) produced by virus inactivation with caprylate and column chromatography. Vox Sang 2003, 84:193-201.
  • [20]Nimmerjahn F, Ravetch JV: Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 2008, 26:513-533.
  • [21]Lehmann HC, Hartung HP: Plasma exchange and intravenous immunoglobulins: mechanism of action in immune-mediated neuropathies. J Neuroimmunol 2011, 231:61-69.
  • [22]Tackenberg B, Nimmerjahn F, Lunemann JD: Mechanisms of IVIG efficacy in chronic inflammatory demyelinating polyneuropathy. J Clin Immunol 2010, 30(Suppl 1):S65-S69.
  • [23]Pigard N, Elovaara I, Kuusisto H, Paalavuo R, Dastidar P, Zimmermann K, Schwarz HP, Reipert B: Therapeutic activities of intravenous immunoglobulins in multiple sclerosis involve modulation of chemokine expression. J Neuroimmunol 2009, 209:114-120.
  • [24]Kaveri SV, Maddur MS, Hegde P, Lacroix-Desmazes S, Bayry J: Intravenous immunoglobulins in immunodeficiencies: more than mere replacement therapy. Clin Exp Immunol 2011, 164:2-5.
  • [25]Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD, Lacroix-Desmazes S, Bayry J, Kaveri SV: Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 2007, 27:233-245.
  • [26]Siberil S, Elluru S, Graff-Dubois S, Negi VS, Delignat S, Mouthon L, Lacroix-Desmazes S, Kazatchkine MD, Bayary J, Kaveri SV: Intravenous immunoglobulins in autoimmune and inflammatory diseases: a mechanistic perspective. Ann N Y Acad Sci 2007, 1110:497-506.
  • [27]Bayary J, Dasgupta S, Misra N, Ephrem A, Van H, Jean-Paul D, Delignat S, Hassan G, Caligiuri G, Nicoletti A, Lacroix-Desmazes S, Kazatchkine MD, Kaveri S: Intravenous immunoglobulin in autoimmune disorders: an insight into the immunoregulatory mechanisms. Int Immunopharmacol 2006, 6:528-534.
  • [28]Vani J, Elluru S, Negi V-S, Lacroix-Desmazes S, Kazatchkine MD, Bayary J, Kaveri SV: Role of natural antibodies in immune homeostasis: IVIg perspective. Autoimmun Rev 2008, 7:440-444.
  • [29]Creange A, Belec L, Clair B, Degos JD, Raphael JC, Gherardi RK: Circulating transforming growth factor beta 1 (TGF-β1) in Guillain–Barre syndrome: decreased concentrations in the early course and increase with motor function. J Neurol Neurosurg Psychiatry 1998, 64:162-165.
  • [30]Keskin DB, Stern JNH, Fridkis-Hareli M, Razzaque A: Cytokine profiles in pemphigus vulgaris patients treated with intravenous immunoglobulins as compared to conventional immunosuppressive therapy. Cytokine 2008, 41:315-321.
  • [31]Stangel M, Compston A: Polyclonal immunoglobulins (IVIg) modulate nitric oxide production and microglial functions in vitro via Fc receptors. J Neuroimmunol 2001, 112:63-71.
  • [32]Issekutz AC, Rowter D, MacMillan HF: Intravenous immunoglobulin G (IVIG) inhibits IL-1- and TNF-alpha-dependent, but not chemotactic-factor-stimulated, neutrophil transendothelial migration. Clin Immunol 2011, 141:187-196.
  • [33]Lapointe BM: IVIg therapy in brain inflammation: etiology-dependent differential effects on leucocyte recruitment. Brain 2004, 127:2649-2656.
  • [34]Reipert BM, Stellamor MT, Poell M, Ilas J, Sasgary M, Reipert S, Zimmermann K, Ehrlich H, Schwarz HP: Variation of anti-Fas antibodies in different lots of intravenous immunoglobulin. Vox Sang 2008, 94:334-341.
  • [35]Puli L, Pomeshchik Y, Olas K, Malm T, Koistinaho J, Tanila H: Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation 2012, 9:105. BioMed Central Full Text
  • [36]Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L: Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol 2011, 10:1015-1025.
  • [37]Yasuda T, Mochizuki H: The regulatory role of alpha-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease. Apoptosis 2010, 15:1312-1321.
  • [38]Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, Patrick C, Trejo M, Ubhi K, Rohn TT, Mueller-Steiner S, Seubert P, Barbour R, McConlogue L, Buttini M, Games D, Schenk D: Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of lewy body disease. PLoS One 2011, 6:e19338.
  • [39]Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D: Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 2005, 46:857-868.
  • [40]Patrias LM, Klaver AC, Coffey MP, Loeffler DA: Specific antibodies to soluble alpha-synuclein conformations in intravenous immunoglobulin preparations. Clin Exp Immunol 2010, 161:527-535.
  • [41]Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AHV, Halliday G: Missing pieces in the Parkinson’s disease puzzle. Nat Med 2010, 16:653-661.
  • [42]Nomoto M: Clinical pharmacology and neuroprotection in Parkinson’s disease. Parkinsonism Relat Disord 2003, 9:55-58.
  • [43]Jackson-Lewis V, Przedborski S: Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2007, 2:141-151.
  • [44]Yokoyama H, Kuroiwa H, Kasahara J, Araki T: Neuropharmacological approach against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of Parkinson’s disease. Acta Neurobiol Exp 2011, 71:269-280.
  • [45]Calon F, Lavertu N, Lemieux AM, Morissette M, Goulet M, Grondin R, Blanchet PJ, Bédard PJ, Di Paolo T: Effect of MPTP-induced denervation on basal ganglia GABA(B) receptors: correlation with dopamine concentrations and dopamine transporter. Synapse 2001, 40:225-234.
  • [46]Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, Younkin S, Younkin L, Schiff R, Weksler ME: 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2008, 30:1728-1736.
  • [47]Tremblay C, Pilote M, Phivilay A, Emond V, Bennett DA, Calon F: Biochemical characterization of Abeta and tau pathologies in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 2007, 12:377-390.
  • [48]Bousquet M, St-Amour I, Vandal M, Julien P, Cicchetti F, Calon F: High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice. Neurobiol Dis 2012, 45:529-538.
  • [49]Bousquet M, Saint-Pierre M, Julien C, Salem N, Cicchetti F, Calon F: Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 2008, 22:1213-1225.
  • [50]Drouin-Ouellet J, Gibrat C, Bousquet M, Calon F, Kriz J, Cicchetti F: The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. J Neuroinflammation 2011, 8:137. BioMed Central Full Text
  • [51]Olivito B, Taddio A, Simonini G, Massai C, Ciullini S, Gambineri E, de Martino M, Azzari C, Cimaz R: Defective FOXP3 expression in patients with acute Kawasaki disease and restoration by intravenous immunoglobulin therapy. Clin Exp Rheumatol 2010, 28:93-97.
  • [52]Tsurikisawa N, Saito H, Oshikata C, Tsuburai T, Akiyama K: High-dose intravenous immunoglobulin treatment increases regulatory T cells in patients with eosinophilic granulomatosis with polyangiitis. J Rheumatol 2012, 39:1019-1025.
  • [53]Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, Delignat S, Elluru S, Bayry J, Lacroix-Desmazes S, Cohen JL, Salomon BL, Kazatchkine MD, Kaveri SV, Misra N: Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 2008, 111:715-722.
  • [54]Ramakrishna C, Newo ANS, Shen Y-W, Cantin E: Passively administered pooled human immunoglobulins exert IL-10 dependent anti-inflammatory effects that protect against fatal HSV encephalitis. PLoS Pathog 2011, 7:e1002071.
  • [55]Sakaguchi S, Miyara M, Costantino CM, Hafler DA: FoxP3(+) regulatory T cells in the human immune system. Nat Rev Immunol 2010, 10:490-500.
  • [56]Poojary KV, Kong Y-M, Farrar MA: Control of Th2-mediated inflammation by regulatory T cells. Am J Pathol 2010, 177:525-531.
  • [57]Reynolds AD, Stone DK, Hutter JAL, Benner EJ, Mosley RL, Gendelman HE: Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 2010, 184:2261-2271.
  • [58]Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL: Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 2007, 82:1083-1094.
  • [59]Chi Y, Fan Y, He L, Liu W, Wen X, Zhou S, Wang X, Zhang C, Kong H, Sonoda L, Tripathi P, Li CJ, Yu MS, Su C, Hu G: Novel role of aquaporin-4 in CD4+‚ CD25+ T regulatory cell development and severity of Parkinson’s disease. Aging Cell 2011, 10:368-382.
  • [60]Starke C, Frey S, Wellmann U, Urbonaviciute V, Herrmann M, Amann K, Schett G, Winkler T, Voll RE: High frequency of autoantibody-secreting cells and long-lived plasma cells within inflamed kidneys of NZB/W F1 lupus mice. Eur J Immunol 2011, 41:2107-2112.
  • [61]Bontscho J, Schreiber A, Manz RA, Schneider W, Luft FC, Kettritz R: Myeloperoxidase-specific plasma cell depletion by Bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J Am Soc Nephrol 2011, 22:336-348.
  • [62]Daubner SC, Le T, Wang S: Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 2011, 508:1-12.
  • [63]Jakowec MW, Nixon K, Hogg E, McNeill T, Petzinger GM: Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway. J Neurosci Res 2004, 76:539-550.
  • [64]Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S: Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995, 4:257-269.
  • [65]Bezard E, Dovero S, Bioulac B, Gross C: Effects of different schedules of MPTP administration on dopaminergic neurodegeneration in mice. Exp Neurol 1997, 148:288-292.
  • [66]Bezard E: A call for clinically driven experimental design in assessing neuroprotection in experimental Parkinsonism. Behav Pharmacol 2006, 17:379-382.
  • [67]Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, Gasser T, Stoltze L: Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 2007, 188:117-127.
  • [68]Aukrust P, Muller F, Nordoy I, Haug CJ, Froland SS: Modulation of lymphocyte and monocyte activity after intravenous immunoglobulin administration in vivo. Clin Exp Immunol 1997, 107:50-56.
  • [69]Baba T, Ishizu A, Iwasaki S, Suzuki A, Tomaru U, Ikeda H, Yoshiki T, Kasahara M: CD4+/CD8+ macrophages infiltrating at inflammatory sites: a population of monocytes/macrophages with a cytotoxic phenotype. Blood 2006, 107:2004-2012.
  • [70]Bas J, Calopa M, Mestre M, MD G, Cutillas B, Ambrosio S, Buendia E: Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol 2001, 113:146-152.
  • [71]Hisanaga K, Asagi M, Itoyama Y, Iwasaki Y: Increase in peripheral CD4 bright + CD8 dull + T cells in Parkinson disease. Arch Neurol 2001, 58:1580-1583.
  • [72]Calopa M, Bas J, Callen A, Mestre M: Apoptosis of peripheral blood lymphocytes in Parkinson patients. Neurobiol Dis 2010, 38:1-7.
  • [73]Janke AD, Giuliani F, Yong VW: IVIg attenuates T cell-mediated killing of human neurons. J Neuroimmunol 2006, 177:181-188.
  • [74]Ito K, Hara H, Okada T, Shimojima H, Suzuki H: Toxic epidermal necrolysis treated with low-dose intravenous immunoglobulin: immunohistochemical study of Fas and Fas-ligand expression. Clin Exp Dermatol 2004, 29:679-680.
  • [75]Artac H, Kara R, Reisli I: In vivo modulation of the expressions of Fas and CD25 by intravenous immunoglobulin in common variable immunodeficiency. Clin Exp Med 2009, 10:27-31.
  • [76]Magga J, Puli L, Pihlaja R, Kanninen K, Neulamaa S, Malm T, Hartig W, Grosche J, Goldsteins G, Tanila H, Koistinaho J, Koistinaho M: Human intravenous immunoglobulin provides protection against Abeta toxicity by multiple mechanisms in a mouse model of Alzheimer’s disease. J Neuroinflammation 2010, 7:90. BioMed Central Full Text
  • [77]Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM: Blocking IL-1 signaling rescues cognition, attenuates Tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer’s disease model. J Immunol 2011, 187:6549.
  • [78]Tan J, Town T, Crawford F, Mori T, Delledonne A, Crescentini R, Obregon D, Flavell RA, Mullan MJ: Role of CD40 ligand in amyloidosis in transgenic Alzheimer’s mice. Nat Neurosci 2002, 5:1288-1293.
  • [79]Okun E, Mattson M, Arumugam T: Involvement of Fc receptors in disorders of the central nervous system. Neuromol Med 2010, 12:164-178.
  • [80]Orr CF: A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 2005, 128:2665-2674.
  • [81]Bezard E, Przedborski S: A tale on animal models of Parkinson’s disease. Mov Disord 2011, 26:993-1002.
  • [82]Duty S, Jenner P: Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 2011, 164:1357-1391.
  • [83]Meissner W, Hill MP, Tison F, Gross CE, Bezard E: Neuroprotective strategies for Parkinson’s disease: conceptual limits of animal models and clinical trials. Trends Pharmacol Sci 2004, 25:249-253.
  • [84]Riederer P, Wuketich S: Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 1976, 38:277-301.
  • [85]Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F: Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 1973, 20:415-455.
  • [86]Meredith GE, Kang UJ: Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Mov Disord 2006, 21:1595-1606.
  • [87]Chagniel L, Robitaille C, Lacharité-Mueller C, Bureau G, Cyr M: Partial dopamine depletion in MPTP-treated mice differentially altered motor skill learning and action control. Behav Brain Res 2012, 228:9-15.
  • [88]Hutter-Saunders JAL, Gendelman HE, Mosley RL: Murine motor and behavior functional evaluations for acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. J Neuroimmune Pharmacol 2011, 7:279-288.
  • [89]Rousselet E, Joubert C, Callebert J, Parain K, Tremblay L, Orieux G, Launay J-M, Cohen-Salmon C, Hirsch EC: Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol Dis 2003, 14:218-228.
  • [90]Jenner P: The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson’s disease. Parkinsonism Relat Disord 2003, 9:131-137.
  • [91]Shimoji M, Zhang L, Mandir A, Dawson V, Dawson T: Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Mol Brain Res 2005, 134:103-108.
  • [92]Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S: Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 2000, 74:721-729.
  • [93]Gibrat C, Saint-Pierre M, Bousquet M, Lévesque D, Rouillard C, Cicchetti F: Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and alpha-synuclein inclusions. J Neurochem 2009, 109:1469-1482.
  • [94]Fornai F, Schlüer OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Südhof TC: Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 2005, 102:3413-3418.
  • [95]Blesa J, Phani S, Jackson-Lewis V, Przedborski S: Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012, 2012:10. Article ID 845618, doi:10.1155/2012/845618
  • [96]Katsman Y, Foo AH, Leontyev D, Branch DR: Improved mouse models for the study of treatment modalities for immune-mediated platelet destruction. Transfusion 2010, 50:1285-1294.
  • [97]Aubin E, Lemieux R, Bazin R: Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation. Blood 2010, 115:1727-1734.
  • [98]Racz Z, Nagy E, Rosivall L, Szebeni J, Hamar P: Sugar-free, glycine-stabilized intravenous immunoglobulin prevents skin but not renal disease in the MRL/lpr mouse model of systemic lupus. Lupus 2010, 19:599-612.
  • [99]Gonzalez-Flores O, Gomora-Arrati P, Garcia-Juarez M, Miranda-Martinez A, Armengual-Villegas A, Camacho-Arroyo I, Guerra-Araiza C: Progesterone receptor isoforms differentially regulate the expression of tryptophan and tyrosine hydroxylase and glutamic acid decarboxylase in the rat hypothalamus. Neurochem Int 2011, 59:671-676.
  • [100]Bosier B, Muccioli GG, Mertens B, Sarre S, Michotte Y, Lambert DM, Hermans E: Differential modulations of striatal tyrosine hydroxylase and dopamine metabolism by cannabinoid agonists as evidence for functional selectivity in vivo. Neuropharmacology 2012, 62:2327-2335.
  • [101]Ferrari MFR, Coelho EF, Farizatto KLG, Chadi G, Fior-Chadi DR: Modulation of tyrosine hydroxylase, neuropeptide Y, glutamate, and substance P in ganglia and brain areas involved in cardiovascular control after chronic exposure to nicotine. Int J Hypertens 2011, 2011:1-9.
  • [102]Dauer W, Kholodilov N, Vila M, Trillat A-C, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R: Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 2002, 99:14524-14529.
  • [103]Schluter OM, Fornai F, Alessandri MG, Takamori S, Geppert M, Jahn R, Sudhof TC: Role of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 2003, 118:985-1002.
  • [104]Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL: Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology 2004, 25:761-769.
  • [105]Robertson DC, Schmidt O, Ninkina N, Jones PA, Sharkey J, Buchman VL: Developmental loss and resistance to MPTP toxicity of dopaminergic neurones in substantia nigra pars compacta of gamma-synuclein, alpha-synuclein and double alpha/gamma-synuclein null mutant mice. Neurochem 2004, 89:1126-1136.
  • [106]Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF: Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 2006, 21:541-548.
  • [107]Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, Kalofoutis A, Buchman VL: Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem 2006, 101:749-756.
  • [108]Yanamandra K, Gruden MA, Casaite V, Meskys R, Forsgren L, Morozova-Roche LA: Alpha-synuclein reactive antibodies as diagnostic biomarkers in blood sera of Parkinson’s disease patients. PLoS One 2011, 6:e18513.
  • [109]He Y, Le W-D, Appel SH: Role of Fcγ receptors in nigral cell injury induced by Parkinson disease immunoglobulin injection into mouse substantia nigra. Exp Neurol 2002, 176:322-327.
  文献评价指标  
  下载次数:79次 浏览次数:23次