Journal of Neuroinflammation | |
Impact of intravenous immunoglobulin on the dopaminergic system and immune response in the acute MPTP mouse model of Parkinson’s disease | |
Frédéric Calon3  Renée Bazin2  Francesca Cicchetti1  Janelle Drouin-Ouellet1  Isabelle Paré2  Mélanie Bousquet3  Isabelle St-Amour2  | |
[1] Département de Psychiatrie & Neurosciences, Faculté de Médecine, Université Laval, Québec, QC, Canada, G1V 0A6;Département de Recherche et Développement, Héma-Québec, Québec, QC, Canada , G1V 5C3;Faculté de Pharmacie, Université Laval, Québec, QC, Canada , G1V 0A6 | |
关键词: Dopamine; MPTP; Neurodegeneration; Immunity; Parkinson’s disease; Intravenous immunoglobulin; | |
Others : 1160208 DOI : 10.1186/1742-2094-9-234 |
|
received in 2012-05-25, accepted in 2012-09-16, 发布年份 2012 | |
【 摘 要 】
Intravenous immunoglobulin (IVIg) is a blood-derived product, used for the treatment of immunodeficiency and autoimmune diseases. Since a range of immunotherapies have recently been proposed as a therapeutic strategy for Parkinson’s disease (PD), we investigated the effects of an IVIg treatment in a neurotoxin-induced animal model of PD. Mice received four injections of MPTP (15 mg/kg) at 2-hour intervals followed by a 14-day IVIg treatment, which induced key immune-related changes such as increased regulatory T-cell population and decreased CD4+/CD8+ ratio. The MPTP treatment induced significant 80% and 84% decreases of striatal dopamine concentrations (P < 0.01), as well as 33% and 40% reductions in the number of nigral dopaminergic neurons (P < 0.001) in controls and IVIg-treated mice, respectively. Two-way analyses of variance further revealed lower striatal tyrosine hydroxylase protein levels, striatal homovanillic acid concentrations and nigral dopaminergic neurons (P < 0.05) in IVIg-treated animals. Collectively, our results fail to support a neurorestorative effect of IVIg on the nigrostriatal system in the MPTP-treated mice and even suggest a trend toward a detrimental effect of IVIg on the dopaminergic system. These preclinical data underscore the need to proceed with caution before initiating clinical trials of IVIg in PD patients.
【 授权许可】
2012 St-Amour et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150410095814370.pdf | 1916KB | download | |
Figure 7. | 116KB | Image | download |
Figure 6. | 88KB | Image | download |
Figure 5. | 75KB | Image | download |
Figure 4. | 74KB | Image | download |
Figure 3. | 103KB | Image | download |
Figure 2. | 133KB | Image | download |
Figure 1. | 117KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Lofrumento DD, Saponaro C, Cianciulli A, De Nuccio F, Mitolo V, Nicolardi G, Panaro MA: MPTP-induced neuroinflammation increases the expression of pro-inflammatory cytokines and their receptors in mouse brain. Neuroimmunomodulation 2011, 18:79-88.
- [2]Vroon A, Drukarch B, Bol JGJM, Cras P, Brevé JJP, Allan SM, Relton JK, Hoogland PVJM, Van Dam AM: Neuroinflammation in Parkinson’s patients and MPTP-treated mice is not restricted to the nigrostriatal system: microgliosis and differential expression of interleukin-1 receptors in the olfactory bulb. Exp Gerontol 2007, 42:762-771.
- [3]Boka G, Anglade P, Wallach D, Javoy-Agid F, Agid Y, Hirsch EC: Immunocytochemical analysis of tumor necrosis factor and its receptors in Parkinson’s disease. Neurosci Lett 1994, 172:151-154.
- [4]Mogi M, Harada M, Kondo T, Narabayashi H, Riederer P, Nagatsu T: Transforming growth factor-beta 1 levels are elevated in the striatum and in ventricular cerebrospinal fluid in Parkinson’s disease. Neurosci Lett 1995, 193:129-132.
- [5]Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T: Tumor necrosis factor-alpha (TNF-α) increases both in the brain and in the cerebrospinal fluid from parkinsonian patients. Neurosci Lett 1994, 165:208-210.
- [6]Mogi M, Kondo T, Mizuno Y, Nagatsu T: p53 protein, interferon-gamma, and NF-Kb levels are elevated in the parkinsonian brain. Neurosci Lett 2007, 414:94-97.
- [7]Scalzo P, Kummer A, Cardoso F, Teixeira AL: Serum levels of interleukin-6 are elevated in patients with Parkinson’s disease and correlate with physical performance. Neurosci Lett 2010, 468:56-58.
- [8]Scalzo P, Kummer A, Cardoso F, Teixeira AL: Increased serum levels of soluble tumor necrosis factor-alpha receptor-1 in patients with Parkinson’s disease. J Neuroimmunol 2009, 216:122-125.
- [9]Stypula G, Kunert-Radek J, Stepien H, Zylinska K, Pawlikowski M: Evaluation of interleukins, ACTH, cortisol and prolactin concentrations in the blood of patients with parkinson’s disease. Neuroimmunomodulation 1996, 3:131-134.
- [10]Dobbs RJ, Charlett A, Purkiss AG, Dobbs SM, Weller C, Peterson DW: Association of circulating TNF-alpha and IL-6 with ageing and parkinsonism. Acta Neurol Scand 1999, 100:34-41.
- [11]Varani K, Vincenzi F, Tosi A, Gessi S, Casetta I, Granieri G, Fazio P, Leung E, MacLennan S, Granieri E, Borea PA: A2A adenosine receptor overexpression and functionality, as well as TNF-alpha levels, correlate with motor symptoms in Parkinson’s disease. FASEB J 2010, 24:587-598.
- [12]Nicoletti A, Fagone P, Donzuso G, Mangano K, Dibilio V, Caponnetto S, Bendtzen K, Zappia M, Nicoletti F: Parkinson’s disease is associated with increased serum levels of macrophage migration inhibitory factor. Cytokine 2011, 55:165-167.
- [13]Hofmann KW, Schuh AFS, Saute J, Townsend R, Fricke D, Leke R, Souza DO, Portela LV, Chaves MLF, Rieder CRM: Interleukin-6 serum levels in patients with Parkinson’s disease. Neurochem Res 2009, 34:1401-1404.
- [14]Brochard V, Combadière B, Prigent A, Laouar Y, Perrin A, Beray-Berthat V, Bonduelle O, Alvarez-Fischer D, Callebert J, Launay J-M, Duyckaerts C, Flavell RA, Hirsch EC, Hunot S: Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest 2008, 119:182-192.
- [15]Dodel R, Neff F, Noelker C, Pul R, Du Y, Bacher M, Oertel W: Intravenous immunoglobulins as a treatment for Alzheimer’s disease: rationale and current evidence. Drugs 2010, 70:513-528.
- [16]Stein MR, Nelson RP, Church JA, Wasserman RL, Borte M, Vermylen C, Bichler J: Safety and efficacy of Privigen, a novel 10% liquid immunoglobulin preparation for intravenous use, in patients with primary immunodeficiencies. J Clin Immunol 2009, 29:137-144.
- [17]Ballow M, Berger M, Bonilla FA, Buckley RH, Cunningham-Rundles CH, Fireman P, Kaliner M, Ochs HD, Skoda-Smith S, Sweetser MT, Taki H, Lathia C: Pharmacokinetics and tolerability of a new intravenous immunoglobulin preparation, IGIV-C, 10% (Gamunex, 10%). Vox Sang 2003, 84:202-210.
- [18]Roifman CM, Schroeder H, Berger M, Sorensen R, Ballow M, Buckley RH, Gewurz A, Korenblat P, Sussman G, Lemm G: Comparison of the efficacy of IGIV-C, 10% (caprylate/chromatography) and IGIV-SD, 10% as replacement therapy in primary immune deficiency. Int Immunopharmacol 2003, 3:1325-1333.
- [19]Lebing W, Remington KM, Schreiner C, Paul HI: Properties of a new intravenous immunoglobulin (IGIV-C, 10%) produced by virus inactivation with caprylate and column chromatography. Vox Sang 2003, 84:193-201.
- [20]Nimmerjahn F, Ravetch JV: Anti-inflammatory actions of intravenous immunoglobulin. Annu Rev Immunol 2008, 26:513-533.
- [21]Lehmann HC, Hartung HP: Plasma exchange and intravenous immunoglobulins: mechanism of action in immune-mediated neuropathies. J Neuroimmunol 2011, 231:61-69.
- [22]Tackenberg B, Nimmerjahn F, Lunemann JD: Mechanisms of IVIG efficacy in chronic inflammatory demyelinating polyneuropathy. J Clin Immunol 2010, 30(Suppl 1):S65-S69.
- [23]Pigard N, Elovaara I, Kuusisto H, Paalavuo R, Dastidar P, Zimmermann K, Schwarz HP, Reipert B: Therapeutic activities of intravenous immunoglobulins in multiple sclerosis involve modulation of chemokine expression. J Neuroimmunol 2009, 209:114-120.
- [24]Kaveri SV, Maddur MS, Hegde P, Lacroix-Desmazes S, Bayry J: Intravenous immunoglobulins in immunodeficiencies: more than mere replacement therapy. Clin Exp Immunol 2011, 164:2-5.
- [25]Negi VS, Elluru S, Siberil S, Graff-Dubois S, Mouthon L, Kazatchkine MD, Lacroix-Desmazes S, Bayry J, Kaveri SV: Intravenous immunoglobulin: an update on the clinical use and mechanisms of action. J Clin Immunol 2007, 27:233-245.
- [26]Siberil S, Elluru S, Graff-Dubois S, Negi VS, Delignat S, Mouthon L, Lacroix-Desmazes S, Kazatchkine MD, Bayary J, Kaveri SV: Intravenous immunoglobulins in autoimmune and inflammatory diseases: a mechanistic perspective. Ann N Y Acad Sci 2007, 1110:497-506.
- [27]Bayary J, Dasgupta S, Misra N, Ephrem A, Van H, Jean-Paul D, Delignat S, Hassan G, Caligiuri G, Nicoletti A, Lacroix-Desmazes S, Kazatchkine MD, Kaveri S: Intravenous immunoglobulin in autoimmune disorders: an insight into the immunoregulatory mechanisms. Int Immunopharmacol 2006, 6:528-534.
- [28]Vani J, Elluru S, Negi V-S, Lacroix-Desmazes S, Kazatchkine MD, Bayary J, Kaveri SV: Role of natural antibodies in immune homeostasis: IVIg perspective. Autoimmun Rev 2008, 7:440-444.
- [29]Creange A, Belec L, Clair B, Degos JD, Raphael JC, Gherardi RK: Circulating transforming growth factor beta 1 (TGF-β1) in Guillain–Barre syndrome: decreased concentrations in the early course and increase with motor function. J Neurol Neurosurg Psychiatry 1998, 64:162-165.
- [30]Keskin DB, Stern JNH, Fridkis-Hareli M, Razzaque A: Cytokine profiles in pemphigus vulgaris patients treated with intravenous immunoglobulins as compared to conventional immunosuppressive therapy. Cytokine 2008, 41:315-321.
- [31]Stangel M, Compston A: Polyclonal immunoglobulins (IVIg) modulate nitric oxide production and microglial functions in vitro via Fc receptors. J Neuroimmunol 2001, 112:63-71.
- [32]Issekutz AC, Rowter D, MacMillan HF: Intravenous immunoglobulin G (IVIG) inhibits IL-1- and TNF-alpha-dependent, but not chemotactic-factor-stimulated, neutrophil transendothelial migration. Clin Immunol 2011, 141:187-196.
- [33]Lapointe BM: IVIg therapy in brain inflammation: etiology-dependent differential effects on leucocyte recruitment. Brain 2004, 127:2649-2656.
- [34]Reipert BM, Stellamor MT, Poell M, Ilas J, Sasgary M, Reipert S, Zimmermann K, Ehrlich H, Schwarz HP: Variation of anti-Fas antibodies in different lots of intravenous immunoglobulin. Vox Sang 2008, 94:334-341.
- [35]Puli L, Pomeshchik Y, Olas K, Malm T, Koistinaho J, Tanila H: Effects of human intravenous immunoglobulin on amyloid pathology and neuroinflammation in a mouse model of Alzheimer’s disease. J Neuroinflammation 2012, 9:105. BioMed Central Full Text
- [36]Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L: Pathological roles of alpha-synuclein in neurological disorders. Lancet Neurol 2011, 10:1015-1025.
- [37]Yasuda T, Mochizuki H: The regulatory role of alpha-synuclein and parkin in neuronal cell apoptosis; possible implications for the pathogenesis of Parkinson’s disease. Apoptosis 2010, 15:1312-1321.
- [38]Masliah E, Rockenstein E, Mante M, Crews L, Spencer B, Adame A, Patrick C, Trejo M, Ubhi K, Rohn TT, Mueller-Steiner S, Seubert P, Barbour R, McConlogue L, Buttini M, Games D, Schenk D: Passive immunization reduces behavioral and neuropathological deficits in an alpha-synuclein transgenic model of lewy body disease. PLoS One 2011, 6:e19338.
- [39]Masliah E, Rockenstein E, Adame A, Alford M, Crews L, Hashimoto M, Seubert P, Lee M, Goldstein J, Chilcote T, Games D, Schenk D: Effects of alpha-synuclein immunization in a mouse model of Parkinson’s disease. Neuron 2005, 46:857-868.
- [40]Patrias LM, Klaver AC, Coffey MP, Loeffler DA: Specific antibodies to soluble alpha-synuclein conformations in intravenous immunoglobulin preparations. Clin Exp Immunol 2010, 161:527-535.
- [41]Obeso JA, Rodriguez-Oroz MC, Goetz CG, Marin C, Kordower JH, Rodriguez M, Hirsch EC, Farrer M, Schapira AHV, Halliday G: Missing pieces in the Parkinson’s disease puzzle. Nat Med 2010, 16:653-661.
- [42]Nomoto M: Clinical pharmacology and neuroprotection in Parkinson’s disease. Parkinsonism Relat Disord 2003, 9:55-58.
- [43]Jackson-Lewis V, Przedborski S: Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2007, 2:141-151.
- [44]Yokoyama H, Kuroiwa H, Kasahara J, Araki T: Neuropharmacological approach against MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced mouse model of Parkinson’s disease. Acta Neurobiol Exp 2011, 71:269-280.
- [45]Calon F, Lavertu N, Lemieux AM, Morissette M, Goulet M, Grondin R, Blanchet PJ, Bédard PJ, Di Paolo T: Effect of MPTP-induced denervation on basal ganglia GABA(B) receptors: correlation with dopamine concentrations and dopamine transporter. Synapse 2001, 40:225-234.
- [46]Relkin NR, Szabo P, Adamiak B, Burgut T, Monthe C, Lent RW, Younkin S, Younkin L, Schiff R, Weksler ME: 18-Month study of intravenous immunoglobulin for treatment of mild Alzheimer disease. Neurobiol Aging 2008, 30:1728-1736.
- [47]Tremblay C, Pilote M, Phivilay A, Emond V, Bennett DA, Calon F: Biochemical characterization of Abeta and tau pathologies in mild cognitive impairment and Alzheimer’s disease. J Alzheimers Dis 2007, 12:377-390.
- [48]Bousquet M, St-Amour I, Vandal M, Julien P, Cicchetti F, Calon F: High-fat diet exacerbates MPTP-induced dopaminergic degeneration in mice. Neurobiol Dis 2012, 45:529-538.
- [49]Bousquet M, Saint-Pierre M, Julien C, Salem N, Cicchetti F, Calon F: Beneficial effects of dietary omega-3 polyunsaturated fatty acid on toxin-induced neuronal degeneration in an animal model of Parkinson’s disease. FASEB J 2008, 22:1213-1225.
- [50]Drouin-Ouellet J, Gibrat C, Bousquet M, Calon F, Kriz J, Cicchetti F: The role of the MYD88-dependent pathway in MPTP-induced brain dopaminergic degeneration. J Neuroinflammation 2011, 8:137. BioMed Central Full Text
- [51]Olivito B, Taddio A, Simonini G, Massai C, Ciullini S, Gambineri E, de Martino M, Azzari C, Cimaz R: Defective FOXP3 expression in patients with acute Kawasaki disease and restoration by intravenous immunoglobulin therapy. Clin Exp Rheumatol 2010, 28:93-97.
- [52]Tsurikisawa N, Saito H, Oshikata C, Tsuburai T, Akiyama K: High-dose intravenous immunoglobulin treatment increases regulatory T cells in patients with eosinophilic granulomatosis with polyangiitis. J Rheumatol 2012, 39:1019-1025.
- [53]Ephrem A, Chamat S, Miquel C, Fisson S, Mouthon L, Caligiuri G, Delignat S, Elluru S, Bayry J, Lacroix-Desmazes S, Cohen JL, Salomon BL, Kazatchkine MD, Kaveri SV, Misra N: Expansion of CD4+CD25+ regulatory T cells by intravenous immunoglobulin: a critical factor in controlling experimental autoimmune encephalomyelitis. Blood 2008, 111:715-722.
- [54]Ramakrishna C, Newo ANS, Shen Y-W, Cantin E: Passively administered pooled human immunoglobulins exert IL-10 dependent anti-inflammatory effects that protect against fatal HSV encephalitis. PLoS Pathog 2011, 7:e1002071.
- [55]Sakaguchi S, Miyara M, Costantino CM, Hafler DA: FoxP3(+) regulatory T cells in the human immune system. Nat Rev Immunol 2010, 10:490-500.
- [56]Poojary KV, Kong Y-M, Farrar MA: Control of Th2-mediated inflammation by regulatory T cells. Am J Pathol 2010, 177:525-531.
- [57]Reynolds AD, Stone DK, Hutter JAL, Benner EJ, Mosley RL, Gendelman HE: Regulatory T cells attenuate Th17 cell-mediated nigrostriatal dopaminergic neurodegeneration in a model of Parkinson’s disease. J Immunol 2010, 184:2261-2271.
- [58]Reynolds AD, Banerjee R, Liu J, Gendelman HE, Mosley RL: Neuroprotective activities of CD4+CD25+ regulatory T cells in an animal model of Parkinson’s disease. J Leukoc Biol 2007, 82:1083-1094.
- [59]Chi Y, Fan Y, He L, Liu W, Wen X, Zhou S, Wang X, Zhang C, Kong H, Sonoda L, Tripathi P, Li CJ, Yu MS, Su C, Hu G: Novel role of aquaporin-4 in CD4+‚ CD25+ T regulatory cell development and severity of Parkinson’s disease. Aging Cell 2011, 10:368-382.
- [60]Starke C, Frey S, Wellmann U, Urbonaviciute V, Herrmann M, Amann K, Schett G, Winkler T, Voll RE: High frequency of autoantibody-secreting cells and long-lived plasma cells within inflamed kidneys of NZB/W F1 lupus mice. Eur J Immunol 2011, 41:2107-2112.
- [61]Bontscho J, Schreiber A, Manz RA, Schneider W, Luft FC, Kettritz R: Myeloperoxidase-specific plasma cell depletion by Bortezomib protects from anti-neutrophil cytoplasmic autoantibodies-induced glomerulonephritis. J Am Soc Nephrol 2011, 22:336-348.
- [62]Daubner SC, Le T, Wang S: Tyrosine hydroxylase and regulation of dopamine synthesis. Arch Biochem Biophys 2011, 508:1-12.
- [63]Jakowec MW, Nixon K, Hogg E, McNeill T, Petzinger GM: Tyrosine hydroxylase and dopamine transporter expression following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurodegeneration of the mouse nigrostriatal pathway. J Neurosci Res 2004, 76:539-550.
- [64]Jackson-Lewis V, Jakowec M, Burke RE, Przedborski S: Time course and morphology of dopaminergic neuronal death caused by the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Neurodegeneration 1995, 4:257-269.
- [65]Bezard E, Dovero S, Bioulac B, Gross C: Effects of different schedules of MPTP administration on dopaminergic neurodegeneration in mice. Exp Neurol 1997, 148:288-292.
- [66]Bezard E: A call for clinically driven experimental design in assessing neuroprotection in experimental Parkinsonism. Behav Pharmacol 2006, 17:379-382.
- [67]Rosenkranz D, Weyer S, Tolosa E, Gaenslen A, Berg D, Leyhe T, Gasser T, Stoltze L: Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J Neuroimmunol 2007, 188:117-127.
- [68]Aukrust P, Muller F, Nordoy I, Haug CJ, Froland SS: Modulation of lymphocyte and monocyte activity after intravenous immunoglobulin administration in vivo. Clin Exp Immunol 1997, 107:50-56.
- [69]Baba T, Ishizu A, Iwasaki S, Suzuki A, Tomaru U, Ikeda H, Yoshiki T, Kasahara M: CD4+/CD8+ macrophages infiltrating at inflammatory sites: a population of monocytes/macrophages with a cytotoxic phenotype. Blood 2006, 107:2004-2012.
- [70]Bas J, Calopa M, Mestre M, MD G, Cutillas B, Ambrosio S, Buendia E: Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol 2001, 113:146-152.
- [71]Hisanaga K, Asagi M, Itoyama Y, Iwasaki Y: Increase in peripheral CD4 bright + CD8 dull + T cells in Parkinson disease. Arch Neurol 2001, 58:1580-1583.
- [72]Calopa M, Bas J, Callen A, Mestre M: Apoptosis of peripheral blood lymphocytes in Parkinson patients. Neurobiol Dis 2010, 38:1-7.
- [73]Janke AD, Giuliani F, Yong VW: IVIg attenuates T cell-mediated killing of human neurons. J Neuroimmunol 2006, 177:181-188.
- [74]Ito K, Hara H, Okada T, Shimojima H, Suzuki H: Toxic epidermal necrolysis treated with low-dose intravenous immunoglobulin: immunohistochemical study of Fas and Fas-ligand expression. Clin Exp Dermatol 2004, 29:679-680.
- [75]Artac H, Kara R, Reisli I: In vivo modulation of the expressions of Fas and CD25 by intravenous immunoglobulin in common variable immunodeficiency. Clin Exp Med 2009, 10:27-31.
- [76]Magga J, Puli L, Pihlaja R, Kanninen K, Neulamaa S, Malm T, Hartig W, Grosche J, Goldsteins G, Tanila H, Koistinaho J, Koistinaho M: Human intravenous immunoglobulin provides protection against Abeta toxicity by multiple mechanisms in a mouse model of Alzheimer’s disease. J Neuroinflammation 2010, 7:90. BioMed Central Full Text
- [77]Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM: Blocking IL-1 signaling rescues cognition, attenuates Tau pathology, and restores neuronal beta-catenin pathway function in an Alzheimer’s disease model. J Immunol 2011, 187:6549.
- [78]Tan J, Town T, Crawford F, Mori T, Delledonne A, Crescentini R, Obregon D, Flavell RA, Mullan MJ: Role of CD40 ligand in amyloidosis in transgenic Alzheimer’s mice. Nat Neurosci 2002, 5:1288-1293.
- [79]Okun E, Mattson M, Arumugam T: Involvement of Fc receptors in disorders of the central nervous system. Neuromol Med 2010, 12:164-178.
- [80]Orr CF: A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 2005, 128:2665-2674.
- [81]Bezard E, Przedborski S: A tale on animal models of Parkinson’s disease. Mov Disord 2011, 26:993-1002.
- [82]Duty S, Jenner P: Animal models of Parkinson’s disease: a source of novel treatments and clues to the cause of the disease. Br J Pharmacol 2011, 164:1357-1391.
- [83]Meissner W, Hill MP, Tison F, Gross CE, Bezard E: Neuroprotective strategies for Parkinson’s disease: conceptual limits of animal models and clinical trials. Trends Pharmacol Sci 2004, 25:249-253.
- [84]Riederer P, Wuketich S: Time course of nigrostriatal degeneration in parkinson’s disease. A detailed study of influential factors in human brain amine analysis. J Neural Transm 1976, 38:277-301.
- [85]Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F: Brain dopamine and the syndromes of Parkinson and Huntington. Clinical, morphological and neurochemical correlations. J Neurol Sci 1973, 20:415-455.
- [86]Meredith GE, Kang UJ: Behavioral models of Parkinson’s disease in rodents: a new look at an old problem. Mov Disord 2006, 21:1595-1606.
- [87]Chagniel L, Robitaille C, Lacharité-Mueller C, Bureau G, Cyr M: Partial dopamine depletion in MPTP-treated mice differentially altered motor skill learning and action control. Behav Brain Res 2012, 228:9-15.
- [88]Hutter-Saunders JAL, Gendelman HE, Mosley RL: Murine motor and behavior functional evaluations for acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication. J Neuroimmune Pharmacol 2011, 7:279-288.
- [89]Rousselet E, Joubert C, Callebert J, Parain K, Tremblay L, Orieux G, Launay J-M, Cohen-Salmon C, Hirsch EC: Behavioral changes are not directly related to striatal monoamine levels, number of nigral neurons, or dose of parkinsonian toxin MPTP in mice. Neurobiol Dis 2003, 14:218-228.
- [90]Jenner P: The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson’s disease. Parkinsonism Relat Disord 2003, 9:131-137.
- [91]Shimoji M, Zhang L, Mandir A, Dawson V, Dawson T: Absence of inclusion body formation in the MPTP mouse model of Parkinson’s disease. Mol Brain Res 2005, 134:103-108.
- [92]Vila M, Vukosavic S, Jackson-Lewis V, Neystat M, Jakowec M, Przedborski S: Alpha-synuclein up-regulation in substantia nigra dopaminergic neurons following administration of the parkinsonian toxin MPTP. J Neurochem 2000, 74:721-729.
- [93]Gibrat C, Saint-Pierre M, Bousquet M, Lévesque D, Rouillard C, Cicchetti F: Differences between subacute and chronic MPTP mice models: investigation of dopaminergic neuronal degeneration and alpha-synuclein inclusions. J Neurochem 2009, 109:1469-1482.
- [94]Fornai F, Schlüer OM, Lenzi P, Gesi M, Ruffoli R, Ferrucci M, Lazzeri G, Busceti CL, Pontarelli F, Battaglia G, Pellegrini A, Nicoletti F, Ruggieri S, Paparelli A, Südhof TC: Parkinson-like syndrome induced by continuous MPTP infusion: convergent roles of the ubiquitin-proteasome system and alpha-synuclein. Proc Natl Acad Sci USA 2005, 102:3413-3418.
- [95]Blesa J, Phani S, Jackson-Lewis V, Przedborski S: Classic and new animal models of Parkinson’s disease. J Biomed Biotechnol 2012, 2012:10. Article ID 845618, doi:10.1155/2012/845618
- [96]Katsman Y, Foo AH, Leontyev D, Branch DR: Improved mouse models for the study of treatment modalities for immune-mediated platelet destruction. Transfusion 2010, 50:1285-1294.
- [97]Aubin E, Lemieux R, Bazin R: Indirect inhibition of in vivo and in vitro T-cell responses by intravenous immunoglobulins due to impaired antigen presentation. Blood 2010, 115:1727-1734.
- [98]Racz Z, Nagy E, Rosivall L, Szebeni J, Hamar P: Sugar-free, glycine-stabilized intravenous immunoglobulin prevents skin but not renal disease in the MRL/lpr mouse model of systemic lupus. Lupus 2010, 19:599-612.
- [99]Gonzalez-Flores O, Gomora-Arrati P, Garcia-Juarez M, Miranda-Martinez A, Armengual-Villegas A, Camacho-Arroyo I, Guerra-Araiza C: Progesterone receptor isoforms differentially regulate the expression of tryptophan and tyrosine hydroxylase and glutamic acid decarboxylase in the rat hypothalamus. Neurochem Int 2011, 59:671-676.
- [100]Bosier B, Muccioli GG, Mertens B, Sarre S, Michotte Y, Lambert DM, Hermans E: Differential modulations of striatal tyrosine hydroxylase and dopamine metabolism by cannabinoid agonists as evidence for functional selectivity in vivo. Neuropharmacology 2012, 62:2327-2335.
- [101]Ferrari MFR, Coelho EF, Farizatto KLG, Chadi G, Fior-Chadi DR: Modulation of tyrosine hydroxylase, neuropeptide Y, glutamate, and substance P in ganglia and brain areas involved in cardiovascular control after chronic exposure to nicotine. Int J Hypertens 2011, 2011:1-9.
- [102]Dauer W, Kholodilov N, Vila M, Trillat A-C, Goodchild R, Larsen KE, Staal R, Tieu K, Schmitz Y, Yuan CA, Rocha M, Jackson-Lewis V, Hersch S, Sulzer D, Przedborski S, Burke R, Hen R: Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 2002, 99:14524-14529.
- [103]Schluter OM, Fornai F, Alessandri MG, Takamori S, Geppert M, Jahn R, Sudhof TC: Role of alpha-synuclein in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in mice. Neuroscience 2003, 118:985-1002.
- [104]Drolet RE, Behrouz B, Lookingland KJ, Goudreau JL: Mice lacking alpha-synuclein have an attenuated loss of striatal dopamine following prolonged chronic MPTP administration. Neurotoxicology 2004, 25:761-769.
- [105]Robertson DC, Schmidt O, Ninkina N, Jones PA, Sharkey J, Buchman VL: Developmental loss and resistance to MPTP toxicity of dopaminergic neurones in substantia nigra pars compacta of gamma-synuclein, alpha-synuclein and double alpha/gamma-synuclein null mutant mice. Neurochem 2004, 89:1126-1136.
- [106]Klivenyi P, Siwek D, Gardian G, Yang L, Starkov A, Cleren C, Ferrante RJ, Kowall NW, Abeliovich A, Beal MF: Mice lacking alpha-synuclein are resistant to mitochondrial toxins. Neurobiol Dis 2006, 21:541-548.
- [107]Papachroni KK, Ninkina N, Papapanagiotou A, Hadjigeorgiou GM, Xiromerisiou G, Papadimitriou A, Kalofoutis A, Buchman VL: Autoantibodies to alpha-synuclein in inherited Parkinson’s disease. J Neurochem 2006, 101:749-756.
- [108]Yanamandra K, Gruden MA, Casaite V, Meskys R, Forsgren L, Morozova-Roche LA: Alpha-synuclein reactive antibodies as diagnostic biomarkers in blood sera of Parkinson’s disease patients. PLoS One 2011, 6:e18513.
- [109]He Y, Le W-D, Appel SH: Role of Fcγ receptors in nigral cell injury induced by Parkinson disease immunoglobulin injection into mouse substantia nigra. Exp Neurol 2002, 176:322-327.