Journal of Animal Science and Biotechnology | |
Identification and quantitative mRNA analysis of a novel splice variant of GPIHBP1 in dairy cattle | |
Li Jiang1  Qin Zhang1  Xuan Liu1  Jie Yang1  | |
[1] National Engineering Laboratory for Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture of China; College of Animal Science and Technology, China Agricultural University, Beijing 100193, China | |
关键词: GPIHBP1; Expression pattern; Cattle; Alternative splice variant; | |
Others : 1135847 DOI : 10.1186/2049-1891-5-50 |
|
received in 2014-04-09, accepted in 2014-10-20, 发布年份 2014 | |
【 摘 要 】
Background
Identification of functional genes affecting milk production traits is very crucial for improving breeding efficiency in dairy cattle. Many potential candidate genes have been identified through our previous genome wide association study (GWAS). Of these, GPIHBP1 is an important novel candidate gene for milk production traits. However, the mRNA structure of the bovine GPIHBP1 gene is not fully determined up to now.
Results
In this study, we identified a novel alternatively splice transcript variant (X5) which leads to a 31 bp insertion in exon 3 and also confirmed the other four existed transcripts (X1, X2, X3 and X4) of the bovine GPIHBP1 gene. We showed that transcript X5 with a 31 bp insertion and transcript X1 with an 8 bp deletion might have tremendous effect on the protein function and structure of GPIHBP1, respectively. With semi-quantitative PCR and quantitative real-time RT-PCR, we found that the mRNA expression of GPIHBP1, GPIHBP1-X1 and GPIHBP1-X5 in mammary gland of lactating cows were much higher than that in other tissues.
Conclusions
Our study reports a novel alternative splicing of GPIHBP1 in bovine for the first time and provide useful information for the further functional analyses of GPIHBP1 in dairy cattle.
【 授权许可】
2014 Yang et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150311091241911.pdf | 919KB | download | |
Figure 5. | 47KB | Image | download |
Figure 4. | 58KB | Image | download |
Figure 3. | 165KB | Image | download |
Figure 2. | 50KB | Image | download |
Figure 1. | 47KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Jiang L, Liu J, Sun D, Ma P, Ding X, Yu Y, Zhang Q: Genome wide association studies for milk production traits in Chinese Holstein population. PLoS One 2010, 5(10):e13661.
- [2]Beigneux AP, Davies BS, Bensadoun A, Fong LG, Young SG: GPIHBP1, a GPI-anchored protein required for the lipolytic processing of triglyceride-rich lipoproteins. J Lipid Res 2009, 50(Suppl):S57-S62.
- [3]Young SG, Davies BS, Fong LG, Gin P, Weinstein MM, Bensadoun A, Beigneux AP: GPIHBP1: an endothelial cell molecule important for the lipolytic processing of chylomicrons. Curr Opin Lipidol 2007, 18(4):389-396.
- [4]Gin P, Yin L, Davies BS, Weinstein MM, Ryan RO, Bensadoun A, Fong LG, Young SG, Beigneux AP: The acidic domain of GPIHBP1 is important for the binding of lipoprotein lipase and chylomicrons. J Biol Chem 2008, 283(43):29554-29562.
- [5]Franssen R, Young SG, Peelman F, Hertecant J, Sierts JA, Schimmel AW, Bensadoun A, Kastelein JJ, Fong LG, Dallinga-Thie GM, Beigneux AP: Chylomicronemia with low postheparin lipoprotein lipase levels in the setting of GPIHBP1 defects. Circ Cardiovasc Genet 2010, 3(2):169-178.
- [6]Beigneux AP, Franssen R, Bensadoun A, Gin P, Melford K, Peter J, Walzem RL, Weinstein MM, Davies BS, Kuivenhoven JA, Kastelein JJ, Fong LG, Dallinga-Thie GM, Young SG: Chylomicronemia with a mutant GPIHBP1 (Q115P) that cannot bind lipoprotein lipase. Arterioscler Thromb Vasc Biol 2009, 29(6):956-962.
- [7]Charriere S, Peretti N, Bernard S, Di Filippo M, Sassolas A, Merlin M, Delay M, Debard C, Lefai E, Lachaux A, Moulin P, Marcais C: GPIHBP1 C89F neomutation and hydrophobic C-terminal domain G175R mutation in two pedigrees with severe hyperchylomicronemia. J Clin Endocrinol Metab 2011, 96(10):E1675-E1679.
- [8]Davies BS, Beigneux AP, Barnes RH II, Tu Y, Gin P, Weinstein MM, Nobumori C, Nyren R, Goldberg I, Olivecrona G, Bensadoun A, Young SG, Fong LG: GPIHBP1 is responsible for the entry of lipoprotein lipase into capillaries. Cell Metab 2010, 12(1):42-52.
- [9]Dallinga-Thie GM, Franssen R, Mooij HL, Visser ME, Hassing HC, Peelman F, Kastelein JJ, Peterfy M, Nieuwdorp M: The metabolism of triglyceride-rich lipoproteins revisited: new players, new insight. Atherosclerosis 2010, 211(1):1-8.
- [10]Beigneux AP, Davies BS, Tat S, Chen J, Gin P, Voss CV, Weinstein MM, Bensadoun A, Pullinger CR, Fong LG, Young SG: Assessing the role of the glycosylphosphatidylinositol-anchored high density lipoprotein-binding protein 1 (GPIHBP1) three-finger domain in binding lipoprotein lipase. J Biol Chem 2011, 286(22):19735-19743.
- [11]Rios JJ, Shastry S, Jasso J, Hauser N, Garg A, Bensadoun A, Cohen JC, Hobbs HH: Deletion of GPIHBP1 causing severe chylomicronemia. J Inherit Metab Dis 2012, 35(3):531-540.
- [12]Beigneux AP, Weinstein MM, Davies BS, Gin P, Bensadoun A, Fong LG, Young SG: GPIHBP1 and lipolysis: an update. Curr Opin Lipidol 2009, 20(3):211-216.
- [13]Beigneux AP, Davies BS, Gin P, Weinstein MM, Farber E, Qiao X, Peale F, Bunting S, Walzem RL, Wong JS, Blaner WS, Ding Z, Melford K, Wongsiriroj N, Shu X, de Sauvage F, Ryan R, Fong LG, Bensadoun A, Young SG: Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab 2007, 5(4):279-291.
- [14]Davies BS, Goulbourne CN, Barnes RH II, Turlo KA, Gin P, Vaughan S, Vaux DJ, Bensadoun A, Beigneux AP, Fong LG, Young SG: Assessing mechanisms of GPIHBP1 and lipoprotein lipase movement across endothelial cells. J Lipid Res 2012, 53(12):2690-2697.
- [15]Olivecrona G, Ehrenborg E, Semb H, Makoveichuk E, Lindberg A, Hayden MR, Gin P, Davies BS, Weinstein MM, Fong LG, Beigneux AP, Young SG, Olivecrona T, Hernell O: Mutation of conserved cysteines in the Ly6 domain of GPIHBP1 in familial chylomicronemia. J Lipid Res 2010, 51(6):1535-1545.
- [16]Young SG, Zechner R: Biochemistry and pathophysiology of intravascular and intracellular lipolysis. Genes Dev 2013, 27(5):459-484.
- [17]Petersen TN, Brunak S, Von Heijne G, Nielsen H: SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011, 8(10):785-786.
- [18]Eisenhaber B, Bork P, Eisenhaber F: Prediction of potential GPI-modification sites in proprotein sequences. J Mol Biol 1999, 292(3):741-758.
- [19]Leath KJ, Johnson S, Roversi P, Hughes TR, Smith RA, Mackenzie L, Morgan BP, Lea SM: High-resolution structures of bacterially expressed soluble human CD59. Acta Crystallogr Sect F: Struct Biol Cryst Commun 2007, 63(Pt 8):648-652.
- [20]Arnold K, Bordoli L, Kopp J, Schwede T: The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 2006, 22(2):195-201.
- [21]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001, 25(4):402-408.
- [22]Sunyaev SR, Eisenhaber F, Rodchenkov IV, Eisenhaber B, Tumanyan VG, Kuznetsov EN: PSIC: profile extraction from sequence alignments with position-specific counts of independent observations. Protein Eng 1999, 12(5):387-394.
- [23]Weikard R, Goldammer T, Brunner RM, Kuehn C: Tissue-specific mRNA expression patterns reveal a coordinated metabolic response associated with genetic selection for milk production in cows. Physiol Genomics 2012, 44(14):728-739.
- [24]Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, Stein T, Anderson SM, Neville MC: Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiol Genomics 2007, 28(3):323-336.
- [25]Jensen DR, Gavigan S, Sawicki V, Witsell DL, Eckel RH, Neville MC: Regulation of lipoprotein lipase activity and mRNA in the mammary gland of the lactating mouse. Biochem J 1994, 298(Pt 2):321-327.
- [26]Fisher EA: GPIHBP1: lipoprotein lipase’s ticket to ride. Cell Metab 2010, 12(1):1-2.
- [27]Bionaz M, Loor JJ: Gene networks driving bovine milk fat synthesis during the lactation cycle. BMC Genomics 2008, 9:366. BioMed Central Full Text
- [28]Adeyo O, Goulbourne CN, Bensadoun A, Beigneux AP, Fong LG, Young SG: Glycosylphosphatidylinositol-anchored high-density lipoprotein-binding protein 1 and the intravascular processing of triglyceride-rich lipoproteins. J Intern Med 2012, 272(6):528-540.
- [29]Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S: Function of alternative splicing. Gene 2013, 514(1):1-30.
- [30]Stamm S, Ben-Ari S, Rafalska I, Tang Y, Zhang Z, Toiber D, Thanaraj TA, Soreq H: Function of alternative splicing. Gene 2005, 344:1-20.
- [31]Wang Z, Burge CB: Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 2008, 14(5):802-813.
- [32]Beigneux AP, Gin P, Davies BS, Weinstein MM, Bensadoun A, Fong LG, Young SG: Highly conserved cysteines within the Ly6 domain of GPIHBP1 are crucial for the binding of lipoprotein lipase. J Biol Chem 2009, 284(44):30240-30247.