Journal of Neuroinflammation | |
Complement receptor 2 is up regulated in the spinal cord following nerve root injury and modulates the spinal cord response | |
Fredrik Piehl5  Staffan Cullheim3  Margarita Diez5  Kristina Nilsson Ekdahl4  Bo Nilsson4  Norbert Hübner2  Karin Harnesk5  Johan Zelano3  Matthias Heinig2  Nada Abdelmagid5  Faiez Al Nimer5  Cecilia A. Dominguez5  Shahin Aeinehband5  Mikael Ström5  Alexander Berg3  Rickard P. F. Lindblom1  | |
[1] Neuroimmunology Unit L8:04 CMM, Karolinska University Hospital, Stockholm, 171 76, Sweden;Experimental Genetics of Cardiovascular Diseases, Max-Delbrück Center for Molecular Medicine, Berlin, Germany;Department of Neuroscience, Division of Neuronal Regeneration, Karolinska Institutet, Stockholm, Sweden;Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden;Department of Clinical Neuroscience, Neuroimmunology Unit, Karolinska Institutet, Stockholm, Sweden | |
关键词: Synapses; Neurodegeneration; Neuroinflammation; Complement receptor 2; Complement system; | |
Others : 1231685 DOI : 10.1186/s12974-015-0413-6 |
|
received in 2015-08-01, accepted in 2015-10-16, 发布年份 2015 |
【 摘 要 】
Background
Activation of the complement system has been implicated in both acute and chronic states of neurodegeneration. However, a detailed understanding of this complex network of interacting components is still lacking.
Methods
Large-scale global expression profiling in a rat F2(DAxPVG) intercross identified a strong cis-regulatory influence on the local expression of complement receptor 2 (Cr2) in the spinal cord after ventral root avulsion (VRA). Expression of Cr2 in the spinal cord was studied in a separate cohort of DA and PVG rats at different time-points after VRA, and also following sciatic nerve transection (SNT) in the same strains. Consequently, Cr2 −/− mice and Wt controls were used to further explore the role of Cr2 in the spinal cord following SNT. The in vivo experiments were complemented by astrocyte and microglia cell cultures.
Results
Expression of Cr2 in naïve spinal cord was low but strongly up regulated at 5–7 days after both VRA and SNT. Levels of Cr2 expression, as well as astrocyte activation, was higher in PVG rats than DA rats following both VRA and SNT. Subsequent in vitro studies proposed astrocytes as the main source of Cr2 expression. A functional role for Cr2 is suggested by the finding that transgenic mice lacking Cr2 displayed increased loss of synaptic nerve terminals following nerve injury. We also detected increased levels of soluble CR2 (sCR2) in the cerebrospinal fluid of rats following VRA.
Conclusions
These results demonstrate that local expression of Cr2 in the central nervous system is part of the axotomy reaction and is suggested to modulate subsequent complement mediated effects.
【 授权许可】
2015 Lindblom et al.
Files | Size | Format | View |
---|---|---|---|
Fig. 7. | 22KB | Image | download |
Fig. 6. | 145KB | Image | download |
Fig. 5. | 72KB | Image | download |
Fig. 4. | 134KB | Image | download |
Fig. 3. | 68KB | Image | download |
Fig. 2. | 114KB | Image | download |
Fig. 1. | 45KB | Image | download |
Fig. 7. | 22KB | Image | download |
Fig. 6. | 145KB | Image | download |
Fig. 5. | 72KB | Image | download |
Fig. 4. | 134KB | Image | download |
Fig. 3. | 68KB | Image | download |
Fig. 2. | 114KB | Image | download |
Fig. 1. | 45KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
【 参考文献 】
- [1]Merle NS, Noe R, Halbwachs-Mecarelli L, Fremeaux-Bacchi V, Roumenina LT: Complement system part II: role in immunity. Front Immunol 2015, 6:257.
- [2]Szeplaki G, Szegedi R, Hirschberg K, Gombos T, Varga L, Karadi I, et al.: Strong complement activation after acute ischemic stroke is associated with unfavorable outcomes. Atherosclerosis 2009, 204:315-320.
- [3]Bellander BM, Singhrao SK, Ohlsson M, Mattsson P, Svensson M: Complement activation in the human brain after traumatic head injury. J Neurotrauma 2001, 18:1295-1311.
- [4]Lucchinetti C, Bruck W, Parisi J, Scheithauer B, Rodriguez M, Lassmann H: Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000, 47:707-717.
- [5]Li Y, Qin Z, Yang M, Qin Y, Lin C, Liu S: Differential expression of complement proteins in cerebrospinal fluid from active multiple sclerosis patients. J Cell Biochem 2011, 112:1930-1937.
- [6]Wang Y, Hancock AM, Bradner J, Chung KA, Quinn JF, Peskind ER, et al.: Complement 3 and factor h in human cerebrospinal fluid in Parkinson’s disease, Alzheimer’s disease, and multiple-system atrophy. Am J Pathol 2011, 178:1509-1516.
- [7]Gasque P, Fontaine M, Morgan BP: Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J Immunol 1995, 154:4726-4733.
- [8]Thomas A, Gasque P, Vaudry D, Gonzalez B, Fontaine M: Expression of a complete and functional complement system by human neuronal cells in vitro. Int Immunol 2000, 12:1015-1023.
- [9]Carroll MC: The complement system in regulation of adaptive immunity. Nat Immunol 2004, 5:981-986.
- [10]Ricklin D, Hajishengallis G, Yang K, Lambris JD: Complement: a key system for immune surveillance and homeostasis. Nat Immunol 2010, 11:785-797.
- [11]Alexander JJ, Anderson AJ, Barnum SR, Stevens B, Tenner AJ: The complement cascade: Yin-Yang in neuroinflammation—neuro-protection and -degeneration. J Neurochem 2008, 107:1169-1187.
- [12]Zipfel PF, Skerka C: Complement regulators and inhibitory proteins. Nat Rev Immunol 2009, 9:729-740.
- [13]Griffin FM Jr, Mullinax PJ: Augmentation of macrophage complement receptor function in vitro. III. C3b receptors that promote phagocytosis migrate within the plane of the macrophage plasma membrane. J Exp Med 1981, 154:291-305.
- [14]Chen A, Gaddipati S, Hong Y, Volkman DJ, Peerschke EI, Ghebrehiwet B: Human T cells express specific binding sites for C1q. Role in T cell activation and proliferation. J Immunol 1994, 153:1430-1440.
- [15]Matsumoto AK, Kopicky-Burd J, Carter RH, Tuveson DA, Tedder TF, Fearon DT: Intersection of the complement and immune systems: a signal transduction complex of the B lymphocyte-containing complement receptor type 2 and CD19. J Exp Med 1991, 173:55-64.
- [16]Sedgwick JD, Schwender S, Imrich H, Dorries R, Butcher GW, ter Meulen V: Isolation and direct characterization of resident microglial cells from the normal and inflamed central nervous system. Proc Natl Acad Sci U S A 1991, 88:7438-7442.
- [17]Gasque P, Chan P, Mauger C, Schouft MT, Singhrao S, Dierich MP, et al.: Identification and characterization of complement C3 receptors on human astrocytes. J Immunol 1996, 156:2247-2255.
- [18]Khera R, Das N: Complement Receptor 1: disease associations and therapeutic implications. Mol Immunol 2009, 46:761-772.
- [19]Isaak A, Prechl J, Gergely J, Erdei A: The role of CR2 in autoimmunity. Autoimmunity 2006, 39:357-366.
- [20]Wagner E, Frank MM: Therapeutic potential of complement modulation. Nat Rev Drug Discov 2010, 9:43-56.
- [21]Swanberg M, Duvefelt K, Diez M, Hillert J, Olsson T, Piehl F, et al.: Genetically determined susceptibility to neurodegeneration is associated with expression of inflammatory genes. Neurobiol Dis 2006, 24:67-88.
- [22]Lindblom RP, Strom M, Heinig M, Al Nimer F, Aeinehband S, Berg A, et al. Unbiased expression mapping identifies a link between the complement and cholinergic systems in the rat central nervous system. Journal of immunology 2013.
- [23]Lindblom RP, Aeinehband S, Parsa R, Strom M, Al Nimer F, Zhang XM, et al.: Genetic variability in the rat Aplec C-type lectin gene cluster regulates lymphocyte trafficking and motor neuron survival after traumatic nerve root injury. J Neuroinflammation 2013, 10:60. BioMed Central Full Text
- [24]Strom M, Al Nimer F, Lindblom R, Nyengaard JR, Piehl F: Naturally occurring genetic variability in expression of Gsta4 is associated with differential survival of axotomized rat motoneurons. Neuromolecular Med 2012, 14:15-29.
- [25]Marta M, Stridh P, Becanovic K, Gillett A, Ockinger J, Lorentzen JC, et al.: Multiple loci comprising immune-related genes regulate experimental neuroinflammation. Genes Immun 2010, 11:21-35.
- [26]Molina H, Holers VM, Li B, Fung Y, Mariathasan S, Goellner J, et al.: Markedly impaired humoral immune response in mice deficient in complement receptors 1 and 2. Proc Natl Acad Sci U S A 1996, 93:3357-3361.
- [27]Laird PW, Zijderveld A, Linders K, Rudnicki MA, Jaenisch R, Berns A: Simplified mammalian DNA isolation procedure. Nucleic Acids Res 1991, 19:4293.
- [28]Darvasi A, Soller M: Optimum spacing of genetic markers for determining linkage between marker loci and quantative trait loci. Theor Appl Genet 1994, 89:351-357.
- [29]Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, et al.: Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 2003, 4:249-264.
- [30]Wang J, Williams RW, Manly KF: WebQTL: web-based complex trait analysis. Neuroinformatics 2003, 1:299-308.
- [31]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23:257-258.
- [32]Schafer J, Strimmer K: An empirical Bayes approach to inferring large-scale gene association networks. Bioinformatics 2005, 21:754-764.
- [33]Lander E, Kruglyak L: Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 1995, 11:241-247.
- [34]Jacobson AC, Weis JH: Comparative functional evolution of human and mouse CR1 and CR2. J Immunol 2008, 181:2953-2959.
- [35]Allende ML, Bektas M, Lee BG, Bonifacino E, Kang J, Tuymetova G, et al.: Sphingosine-1-phosphate lyase deficiency produces a pro-inflammatory response while impairing neutrophil trafficking. J Biol Chem 2011, 286:7348-7358.
- [36]Elkouby YM, Elias S, Casey ES, Blythe SA, Tsabar N, Klein PS, et al.: Mesodermal Wnt signaling organizes the neural plate via Meis3. Development 2010, 137:1531-1541.
- [37]Liu J, Wang Y, Birnbaum MJ, Stoffers DA: Three-amino-acid-loop-extension homeodomain factor Meis3 regulates cell survival via PDK1. Proc Natl Acad Sci U S A 2010, 107:20494-20499.
- [38]Mangin B, Goffinet B, Rebai A: Constructing confidence intervals for QTL location. Genetics 1994, 138:1301-1308.
- [39]Hu P, Bembrick AL, Keay KA, McLachlan EM: Immune cell involvement in dorsal root ganglia and spinal cord after chronic constriction or transection of the rat sciatic nerve. Brain Behav Immun 2007, 21:599-616.
- [40]Blinzinger K, Kreutzberg G: Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zellforsch Mikrosk Anat 1968, 85:145-157.
- [41]Berg A, Zelano J, Stephan A, Thams S, Barres BA, Pekny M, et al.: Reduced removal of synaptic terminals from axotomized spinal motoneurons in the absence of complement C3. Exp Neurol 2012, 237:8-17.
- [42]Schwendinger MG, Spruth M, Schoch J, Dierich MP, Prodinger WM: A novel mechanism of alternative pathway complement activation accounts for the deposition of C3 fragments on CR2-expressing homologous cells. J Immunol 1997, 158:5455-5463.
- [43]Moriyama M, Fukuhara T, Britschgi M, He Y, Narasimhan R, Villeda S, et al.: Complement receptor 2 is expressed in neural progenitor cells and regulates adult hippocampal neurogenesis. J Neurosci 2011, 31:3981-3989.
- [44]Ramaglia V, Hughes TR, Donev RM, Ruseva MM, Wu X, Huitinga I, et al.: C3-dependent mechanism of microglial priming relevant to multiple sclerosis. Proc Natl Acad Sci U S A 2012, 109:965-970.
- [45]Toepfner N, Cepok S, Grummel V, Hemmer B: The role of the Epstein-Barr virus receptor CD21 in multiple sclerosis. J Neuroimmunol 2012, 242(1-2):47-51.
- [46]Tomita M, Kadono T, Yazawa N, Kawashima T, Tamaki Z, Ashida R, Ohmatsu H, Asano Y, Sugaya M, Kubo M, et al.: Serum levels of soluble CD21 in patients with systemic sclerosis. Rheumatol Int 2010, 32(2):317-21.
- [47]Masilamani M, von Kempis J, Illges H: Decreased levels of serum soluble complement receptor-II (CR2/CD21) in patients with rheumatoid arthritis. Rheumatology 2004, 43:186-190.
- [48]Singh A, Vastert SJ, Prakken BJ, Illges H: Decreased levels of sCD21 and sCD23 in blood of patients with systemic-juvenile arthritis, polyarticular-juvenile arthritis, and pauciarticular-juvenile arthritis. Rheumatol Int 2011, 32(6):1581-87.
- [49]Oliveira AL, Thams S, Lidman O, Piehl F, Hokfelt T, Karre K, et al.: A role for MHC class I molecules in synaptic plasticity and regeneration of neurons after axotomy. Proc Natl Acad Sci U S A 2004, 101:17843-17848.
- [50]Coggeshall RE, Lekan HA, White FA, Woolf CJ: A-fiber sensory input induces neuronal cell death in the dorsal horn of the adult rat spinal cord. J Comp Neurol 2001, 435:276-282.
- [51]Fawcett JW, Keynes RJ: Peripheral nerve regeneration. Annu Rev Neurosci 1990, 13:43-60.
- [52]Navarro X: Chapter 27: Neural plasticity after nerve injury and regeneration. Int Rev Neurobiol 2009, 87:483-505.
- [53]Lindå H, Shupliakov O, Örnung G, Ottersen OP, Storm-Mathisen J, Risling M, et al.: Ultrastructural evidence for a preferential elimination of glutamate-immunoreactive synaptic terminals from spinal motoneurons after intramedullary axotomy. J Comp Neurol 2000, 425:10-23.
- [54]Barbizan R, Oliveira AL: Impact of acute inflammation on spinal motoneuron synaptic plasticity following ventral root avulsion. J Neuroinflammation 2010, 7:29. BioMed Central Full Text
- [55]Centonze D, Muzio L, Rossi S, Cavasinni F, De Chiara V, Bergami A, et al.: Inflammation triggers synaptic alteration and degeneration in experimental autoimmune encephalomyelitis. J Neurosci 2009, 29:3442-3452.
- [56]Hilton KJ, Cunningham C, Reynolds RA, Perry VH: Early hippocampal synaptic loss precedes neuronal loss and associates with early behavioural deficits in three distinct strains of prion disease. PLoS One 2013, 8:e68062.
- [57]Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, et al.: The classical complement cascade mediates CNS synapse elimination. Cell 2007, 131:1164-1178.
- [58]Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B: Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012, 74:691-705.
- [59]Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutellier L, et al.: A dramatic increase of C1q protein in the CNS during normal aging. J Neurosci 2013, 33:13460-13474.
- [60]Ingram G, Hakobyan S, Hirst CL, Harris CL, Pickersgill TP, Cossburn MD, et al.: Complement regulator factor H as a serum biomarker of multiple sclerosis disease state. Brain : a journal of neurology 2010, 133:1602-1611.
- [61]Harold D, Abraham R, Hollingworth P, Sims R, Gerrish A, Hamshere ML, et al.: Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet 2009, 41:1088-1093.
- [62]Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al.: Genome-wide association study identifies variants at CLU and CR1 associated with Alzheimer’s disease. Nat Genet 2009, 41:1094-1099.
- [63]Fearon DT, Carter RH: The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu Rev Immunol 1995, 13:127-149.
- [64]Webster SD, Park M, Fonseca MI, Tenner AJ: Structural and functional evidence for microglial expression of C1qR(P), the C1q receptor that enhances phagocytosis. J Leukoc Biol 2000, 67:109-116.
- [65]Aichem A, Masilamani M, Illges H: Redox regulation of CD21 shedding involves signaling via PKC and indicates the formation of a juxtamembrane stalk. J Cell Sci 2006, 119:2892-2902.
- [66]Fremeaux-Bacchi V, Aubry JP, Bonnefoy JY, Kazatchkine MD, Kolb JP, Fischer EM: Soluble CD21 induces activation and differentiation of human monocytes through binding to membrane CD23. Eur J Immunol 1998, 28:4268-4274.
- [67]Sahu A, Lambris JD: Structure and biology of complement protein C3, a connecting link between innate and acquired immunity. Immunol Rev 2001, 180:35-48.
- [68]Bajic G, Yatime L, Sim RB, Vorup-Jensen T, Andersen GR: Structural insight on the recognition of surface-bound opsonins by the integrin I domain of complement receptor 3. Proc Natl Acad Sci U S A 2013, 110:16426-16431.
- [69]Beller DI, Springer TA, Schreiber RD: Anti-Mac-1 selectively inhibits the mouse and human type three complement receptor. J Exp Med 1982, 156:1000-1009.
- [70]Fearon DT: Human complement receptors for C3b (CR1) and C3d (CR2). J Invest Dermatol 1985, 85:53s-57s.
- [71]Neher MD, Rich MC, Keene CN, Weckbach S, Bolden AL, Losacco JT, et al.: Deficiency of complement receptors CR2/CR1 in Cr2(−)/(−) mice reduces the extent of secondary brain damage after closed head injury. J Neuroinflammation 2014, 11:95. BioMed Central Full Text