期刊论文详细信息
Journal of Molecular Signaling
p38 mitogen-activated protein kinase and mitogen-activated protein kinase-activated protein kinase 2 (MK2) signaling in atrophic and hypertrophic denervated mouse skeletal muscle
Sven Tågerud1  Marlene Norrby1  Ann-Kristin Fjällström1  Kim Evertsson1 
[1] Department of Chemistry and Biomedical Sciences, Linnaeus University, SE-391 82 Kalmar, Sweden
关键词: Nuclear fractions;    Cytosolic;    Phosphorylation;    Skeletal muscle;    p38;    MK2;    Hsp70;    Hsp25;    Denervation;   
Others  :  802260
DOI  :  10.1186/1750-2187-9-2
 received in 2013-12-16, accepted in 2014-03-10,  发布年份 2014
PDF
【 摘 要 】

Background

p38 mitogen-activated protein kinase has been implicated in both skeletal muscle atrophy and hypertrophy. T317 phosphorylation of the p38 substrate mitogen-activated protein kinase-activated protein kinase 2 (MK2) correlates with muscle weight in atrophic and hypertrophic denervated muscle and may influence the nuclear and cytoplasmic distribution of p38 and/or MK2. The present study investigates expression and phosphorylation of p38, MK2 and related proteins in cytosolic and nuclear fractions from atrophic and hypertrophic 6-days denervated skeletal muscles compared to innervated controls.

Methods

Expression and phosphorylation of p38, MK2, Hsp25 (heat shock protein25rodent/27human, Hsp25/27) and Hsp70 protein expression were studied semi-quantitatively using Western blots with separated nuclear and cytosolic fractions from innervated and denervated hypertrophic hemidiaphragm and atrophic anterior tibial muscles. Unfractionated innervated and denervated atrophic pooled gastrocnemius and soleus muscles were also studied.

Results

No support was obtained for a differential nuclear/cytosolic localization of p38 or MK2 in denervated hypertrophic and atrophic muscle. The differential effect of denervation on T317 phosphorylation of MK2 in denervated hypertrophic and atrophic muscle was not reflected in p38 phosphorylation nor in the phosphorylation of the MK2 substrate Hsp25. Hsp25 phosphorylation increased 3-30-fold in all denervated muscles studied. The expression of Hsp70 increased 3-5-fold only in denervated hypertrophic muscles.

Conclusions

The study confirms a differential response of MK2 T317 phosphorylation in denervated hypertrophic and atrophic muscles and suggests that Hsp70 may be important for this. Increased Hsp25 phosphorylation in all denervated muscles studied indicates a role for factors other than MK2 in the regulation of this phosphorylation.

【 授权许可】

   
2014 Evertsson et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708021639820.pdf 1421KB PDF download
Figure 6. 46KB Image download
Figure 5. 120KB Image download
Figure 4. 89KB Image download
Figure 3. 102KB Image download
Figure 2. 100KB Image download
Figure 1. 49KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Glass DJ: Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 2005, 37:1974-1984.
  • [2]Tracey KJ: Lethal weight loss: the focus shifts to signal transduction. Sci STKE 2002, 2002:pe21.
  • [3]Li YP, Chen Y, John J, Moylan J, Jin B, Mann DL, Reid MB: TNF-alpha acts via p38 MAPK to stimulate expression of the ubiquitin ligase atrogin1/MAFbx in skeletal muscle. FASEB J 2005, 19:362-370.
  • [4]Adams V, Mangner N, Gasch A, Krohne C, Gielen S, Hirner S, Thierse HJ, Witt CC, Linke A, Schuler G, Labeit S: Induction of MuRF1 is essential for TNF-alpha-induced loss of muscle function in mice. J Mol Biol 2008, 384:48-59.
  • [5]Jin B, Li YP: Curcumin prevents lipopolysaccharide-induced atrogin-1/MAFbx upregulation and muscle mass loss. J Cell Biochem 2007, 100:960-969.
  • [6]Kim J, Won KJ, Lee HM, Hwang BY, Bae YM, Choi WS, Song H, Lim KW, Lee CK, Kim B: p38 MAPK Participates in Muscle-Specific RING Finger 1-Mediated Atrophy in Cast-Immobilized Rat Gastrocnemius Muscle. Korean J Physiol Pharmacol 2009, 13:491-496.
  • [7]Paul PK, Gupta SK, Bhatnagar S, Panguluri SK, Darnay BG, Choi Y, Kumar A: Targeted ablation of TRAF6 inhibits skeletal muscle wasting in mice. J Cell Biol 2010, 191:1395-1411.
  • [8]Derbre F, Ferrando B, Gomez-Cabrera MC, Sanchis-Gomar F, Martinez-Bello VE, Olaso-Gonzalez G, Diaz A, Gratas-Delamarche A, Cerda M, Vina J: Inhibition of xanthine oxidase by allopurinol prevents skeletal muscle atrophy: role of p38 MAPKinase and E3 ubiquitin ligases. PLoS One 2012, 7:e46668.
  • [9]Boppart MD, Hirshman MF, Sakamoto K, Fielding RA, Goodyear LJ: Static stretch increases c-Jun NH2-terminal kinase activity and p38 phosphorylation in rat skeletal muscle. Am J Physiol Cell Physiol 2001, 280:C352-C358.
  • [10]Carlson CJ, Fan Z, Gordon SE, Booth FW: Time course of the MAPK and PI3-kinase response within 24 h of skeletal muscle overload. J Appl Physiol 2001, 91:2079-2087.
  • [11]Sakamoto K, Aschenbach WG, Hirshman MF, Goodyear LJ: Akt signaling in skeletal muscle: regulation by exercise and passive stretch. Am J Physiol Endocrinol Metab 2003, 285:E1081-E1088.
  • [12]Hornberger TA, Chien S: Mechanical stimuli and nutrients regulate rapamycin-sensitive signaling through distinct mechanisms in skeletal muscle. J Cell Biochem 2006, 97:1207-1216.
  • [13]Huey KA: Regulation of HSP25 expression and phosphorylation in functionally overloaded rat plantaris and soleus muscles. J Appl Physiol 2006, 100:451-456.
  • [14]Ito Y, Obara K, Ikeda R, Ishii M, Tanabe Y, Ishikawa T, Nakayama K: Passive stretching produces Akt- and MAPK-dependent augmentations of GLUT4 translocation and glucose uptake in skeletal muscles of mice. Pflugers Arch 2006, 451:803-813.
  • [15]Kyriakis JM, Avruch J: Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 2001, 81:807-869.
  • [16]Enslen H, Raingeaud J, Davis RJ: Selective activation of p38 mitogen-activated protein (MAP) kinase isoforms by the MAP kinase kinases MKK3 and MKK6. J Biol Chem 1998, 273:1741-1748.
  • [17]Meier R, Rouse J, Cuenda A, Nebreda AR, Cohen P: Cellular stresses and cytokines activate multiple mitogen-activated-protein kinase kinase homologues in PC12 and KB cells. Eur J Biochem 1996, 236:796-805.
  • [18]Keren A, Tamir Y, Bengal E: The p38 MAPK signaling pathway: a major regulator of skeletal muscle development. Mol Cell Endocrinol 2006, 252:224-230.
  • [19]Gaestel M: MAPKAP kinases - MKs - two's company, three's a crowd. Nat Rev Mol Cell Biol 2006, 7:120-130.
  • [20]Engel K, Schultz H, Martin F, Kotlyarov A, Plath K, Hahn M, Heinemann U, Gaestel M: Constitutive activation of mitogen-activated protein kinase-activated protein kinase 2 by mutation of phosphorylation sites and an A-helix motif. J Biol Chem 1995, 270:27213-27221.
  • [21]Ben-Levy R, Leighton IA, Doza YN, Attwood P, Morrice N, Marshall CJ, Cohen P: Identification of novel phosphorylation sites required for activation of MAPKAP kinase-2. EMBO J 1995, 14:5920-5930.
  • [22]Meng W, Swenson LL, Fitzgibbon MJ, Hayakawa K, Ter Haar E, Behrens AE, Fulghum JR, Lippke JA: Structure of mitogen-activated protein kinase-activated protein (MAPKAP) kinase 2 suggests a bifunctional switch that couples kinase activation with nuclear export. J Biol Chem 2002, 277:37401-37405.
  • [23]Engel K, Kotlyarov A, Gaestel M: Leptomycin B-sensitive nuclear export of MAPKAP kinase 2 is regulated by phosphorylation. EMBO J 1998, 17:3363-3371.
  • [24]Ben-Levy R, Hooper S, Wilson R, Paterson HF, Marshall CJ: Nuclear export of the stress-activated protein kinase p38 mediated by its substrate MAPKAP kinase-2. Curr Biol 1998, 8:1049-1057.
  • [25]Ronkina N, Kotlyarov A, Gaestel M: MK2 and MK3–a pair of isoenzymes? Front Biosci 2008, 13:5511-5521.
  • [26]Tan Y, Rouse J, Zhang A, Cariati S, Cohen P, Comb MJ: FGF and stress regulate CREB and ATF-1 via a pathway involving p38 MAP kinase and MAPKAP kinase-2. EMBO J 1996, 15:4629-4642.
  • [27]Heidenreich O, Neininger A, Schratt G, Zinck R, Cahill MA, Engel K, Kotlyarov A, Kraft R, Kostka S, Gaestel M, Nordheim A: MAPKAP kinase 2 phosphorylates serum response factor in vitro and in vivo. J Biol Chem 1999, 274:14434-14443.
  • [28]Stokoe D, Engel K, Campbell DG, Cohen P, Gaestel M: Identification of MAPKAP kinase 2 as a major enzyme responsible for the phosphorylation of the small mammalian heat shock proteins. FEBS Lett 1992, 313:307-313.
  • [29]Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J: Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J Cell Sci 1997, 110(Pt 3):357-368.
  • [30]Kawano F, Matsuoka Y, Oke Y, Higo Y, Terada M, Wang XD, Nakai N, Fukuda H, Imajoh-Ohmi S, Ohira Y: Role(s) of nucleoli and phosphorylation of ribosomal protein S6 and/or HSP27 in the regulation of muscle mass. Am J Physiol Cell Physiol 2007, 293:C35-C44.
  • [31]Dodd SL, Hain B, Senf SM, Judge AR: Hsp27 inhibits IKKbeta-induced NF-kappaB activity and skeletal muscle atrophy. FASEB J 2009, 23:3415-3423.
  • [32]Dodd S, Hain B, Judge A: Hsp70 prevents disuse muscle atrophy in senescent rats. Biogerontology 2009, 10:605-611.
  • [33]Senf SM, Dodd SL, McClung JM, Judge AR: Hsp70 overexpression inhibits NF-kappaB and Foxo3a transcriptional activities and prevents skeletal muscle atrophy. FASEB J 2008, 22:3836-3845.
  • [34]Gong X, Luo T, Deng P, Liu Z, Xiu J, Shi H, Jiang Y: Stress-induced interaction between p38 MAPK and HSP70. Biochem Biophys Res Commun 2012, 425:357-362.
  • [35]Lawler JM, Song W, Kwak HB: Differential response of heat shock proteins to hindlimb unloading and reloading in the soleus. Muscle Nerve 2006, 33:200-207.
  • [36]Oishi Y, Taniguchi K, Matsumoto H, Kawano F, Ishihara A, Ohira Y: Upregulation of HSP72 in reloading rat soleus muscle after prolonged hindlimb unloading. Jpn J Physiol 2003, 53:281-286.
  • [37]Naito H, Powers SK, Demirel HA, Sugiura T, Dodd SL, Aoki J: Heat stress attenuates skeletal muscle atrophy in hindlimb-unweighted rats. J Appl Physiol 2000, 88:359-363.
  • [38]Selsby JT, Rother S, Tsuda S, Pracash O, Quindry J, Dodd SL: Intermittent hyperthermia enhances skeletal muscle regrowth and attenuates oxidative damage following reloading. J Appl Physiol 2007, 102:1702-1707.
  • [39]Huey KA, Burdette S, Zhong H, Roy RR: Early response of heat shock proteins to functional overload of the soleus and plantaris in rats and mice. Exp Physiol 2010, 95:1145-1155.
  • [40]Locke M: Heat shock protein accumulation and heat shock transcription factor activation in rat skeletal muscle during compensatory hypertrophy. Acta Physiol (Oxf) 2008, 192:403-411.
  • [41]O'Neill DE, Aubrey FK, Zeldin DA, Michel RN, Noble EG: Slower skeletal muscle phenotypes are critical for constitutive expression of Hsp70 in overloaded rat plantaris muscle. J Appl Physiol 2006, 100:981-987.
  • [42]Oishi Y, Ogata T, Ohira Y, Taniguchi K, Roy RR: Calcineurin and heat shock protein 72 in functionally overloaded rat plantaris muscle. Biochem Biophys Res Commun 2005, 330:706-713.
  • [43]Ogata T, Oishi Y, Roy RR, Ohmori H: Effects of T3 treatment on HSP72 and calcineurin content of functionally overloaded rat plantaris muscle. Biochem Biophys Res Commun 2005, 331:1317-1323.
  • [44]Locke M, Atkinson BG, Tanguay RM, Noble EG: Shifts in type I fiber proportion in rat hindlimb muscle are accompanied by changes in HSP72 content. Am J Physiol 1994, 266:C1240-C1246.
  • [45]Feng TP, Lu DX: New lights on the phenomenon of transient hypertrophy in the denervated hemidiaphragm of the rat. Sci Sin 1965, 14:1772-1784.
  • [46]Gutmann E, Hanikova M, Hajek I, Klicpera M, Syrovy I: The postdenervation hypertrophy of the diaphragm. Physiol Bohemoslov 1966, 15:508-524.
  • [47]Sola OM, Martin AW: Denervation hypertrophy and atrophy of the hemidiaphragm of the rat. Am J Physiol 1953, 172:324-332.
  • [48]Norrby M, Tagerud S: Mitogen-activated protein kinase-activated protein kinase 2 (MK2) in skeletal muscle atrophy and hypertrophy. J Cell Physiol 2010, 223:194-201.
  • [49]Carlson CJ, Booth FW, Gordon SE: Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 1999, 277:R601-R606.
  • [50]Green HJ, Reichmann H, Pette D: Inter- and intraspecies comparisons of fibre type distribution and of succinate dehydrogenase activity in type I, IIA and IIB fibres of mammalian diaphragms. Histochemistry 1984, 81:67-73.
  • [51]Sher J, Cardasis C: Skeletal muscle fiber types in the adult mouse. Acta Neurol Scand 1976, 54:45-56.
  • [52]Siu PM, Alway SE: Mitochondria-associated apoptotic signalling in denervated rat skeletal muscle. J Physiol 2005, 565:309-323.
  • [53]Abruzzo PM, di Tullio S, Marchionni C, Belia S, Fano G, Zampieri S, Carraro U, Kern H, Sgarbi G, Lenaz G, Marini M: Oxidative stress in the denervated muscle. Free Radic Res 2010, 44:563-576.
  • [54]Miyabara EH, Nascimento TL, Rodrigues DC, Moriscot AS, Davila WF, AitMou Y, de Tombe PP, Mestril R: Overexpression of inducible 70-kDa heat shock protein in mouse improves structural and functional recovery of skeletal muscles from atrophy. Pflugers Arch 2012, 463:733-741.
  • [55]Oishi Y, Ishihara A, Talmadge RJ, Ohira Y, Taniguchi K, Matsumoto H, Roy RR, Edgerton VR: Expression of heat shock protein 72 in atrophied rat skeletal muscles. Acta Physiol Scand 2001, 172:123-130.
  • [56]Li Z, Jiang Y, Ulevitch RJ, Han J: The primary structure of p38 gamma: a new member of p38 group of MAP kinases. Biochem Biophys Res Commun 1996, 228:334-340.
  • [57]Mertens S, Craxton M, Goedert M: SAP kinase-3, a new member of the family of mammalian stress-activated protein kinases. FEBS Lett 1996, 383:273-276.
  • [58]Cuenda A, Cohen P, Buee-Scherrer V, Goedert M: Activation of stress-activated protein kinase-3 (SAPK3) by cytokines and cellular stresses is mediated via SAPKK3 (MKK6); comparison of the specificities of SAPK3 and SAPK2 (RK/p38). EMBO J 1997, 16:295-305.
  • [59]Wang XS, Diener K, Manthey CL, Wang S, Rosenzweig B, Bray J, Delaney J, Cole CN, Chan-Hui PY, Mantlo N, Lichenstein HS, Zukowski M, Yao Z: Molecular cloning and characterization of a novel p38 mitogen-activated protein kinase. J Biol Chem 1997, 272:23668-23674.
  • [60]Kumar S, McDonnell PC, Gum RJ, Hand AT, Lee JC, Young PR: Novel homologues of CSBP/p38 MAP kinase: activation, substrate specificity and sensitivity to inhibition by pyridinyl imidazoles. Biochem Biophys Res Commun 1997, 235:533-538.
  • [61]Pogozelski AR, Geng T, Li P, Yin X, Lira VA, Zhang M, Chi JT, Yan Z: p38gamma mitogen-activated protein kinase is a key regulator in skeletal muscle metabolic adaptation in mice. PLoS One 2009, 4:e7934.
  • [62]Foster WH, Tidball JG, Wang Y: p38gamma activity is required for maintenance of slow skeletal muscle size. Muscle Nerve 2012, 45:266-273.
  • [63]Zhang G, Li YP: p38beta MAPK upregulates atrogin1/MAFbx by specific phosphorylation of C/EBPbeta. Skelet Muscle 2012, 2:20. BioMed Central Full Text
  • [64]Perdiguero E, Ruiz-Bonilla V, Serrano AL, Munoz-Canoves P: Genetic deficiency of p38alpha reveals its critical role in myoblast cell cycle exit: the p38alpha-JNK connection. Cell Cycle 2007, 6:1298-1303.
  • [65]Kostenko S, Moens U: Heat shock protein 27 phosphorylation: kinases, phosphatases, functions and pathology. Cell Mol Life Sci 2009, 66:3289-3307.
  • [66]Huey KA, McCall GE, Zhong H, Roy RR: Modulation of HSP25 and TNF-alpha during the early stages of functional overload of a rat slow and fast muscle. J Appl Physiol 2007, 102:2307-2314.
  • [67]Huey KA, Hyatt JP, Zhong H, Roy RR: Effects of innervation state on Hsp25 content and phosphorylation in inactive rat plantaris muscles. Acta Physiol Scand 2005, 185:219-227.
  • [68]Inaguma Y, Goto S, Shinohara H, Hasegawa K, Ohshima K, Kato K: Physiological and pathological changes in levels of the two small stress proteins, HSP27 and alpha B crystallin, in rat hindlimb muscles. J Biochem 1993, 114:378-384.
  • [69]Larkins NT, Murphy RM, Lamb GD: Absolute amounts and diffusibility of HSP72, HSP25, and alphaB-crystallin in fast- and slow-twitch skeletal muscle fibers of rat. Am J Physiol Cell Physiol 2012, 302:C228-C239.
  • [70]Magnusson C, Hogklint L, Libelius R, Tagerud S: Expression of mRNA for plasminogen activators and protease nexin-1 in innervated and denervated mouse skeletal muscle. J Neurosci Res 2001, 66:457-463.
  • [71]Siegel AL, Bledsoe C, Lavin J, Gatti F, Berge J, Millman G, Turin E, Winders WT, Rutter J, Palmeiri B, Carlson CG: Treatment with inhibitors of the NF-kappaB pathway improves whole body tension development in the mdx mouse. Neuromuscul Disord 2009, 19:131-139.
  • [72]Bradford MM: A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976, 72:248-254.
  • [73]Magnusson C, Libelius R, Tagerud S: Nogo (Reticulon 4) expression in innervated and denervated mouse skeletal muscle. Mol Cell Neurosci 2003, 22:298-307.
  • [74]Cano E, Doza YN, Ben-Levy R, Cohen P, Mahadevan LC: Identification of anisomycin-activated kinases p45 and p55 in murine cells as MAPKAP kinase-2. Oncogene 1996, 12:805-812.
  文献评价指标  
  下载次数:69次 浏览次数:32次