期刊论文详细信息
BMC Genomics
The reduced kinome of Ostreococcus tauri: core eukaryotic signalling components in a tractable model species
Andrew J Millar2  Thierry Le Bihan2  T Ian Simpson1  Martin E Barrios-Llerena2  Gerben van Ooijen2  Zeenat B Noordally2  Sarah F Martin2  Matthew M Hindle1 
[1] Institute for Adaptive and Neural Computation, School of Informatics, University of Edinburgh, Edinburgh EH8 9AB, UK;Institute of Structural and Molecular Biology, University of Edinburgh, Edinburgh EH9 3JR, UK
关键词: Circadian clock;    MAPK cascade;    TOR signalling;    Phosphorylation;    Model kinome;    Ostreococcus tauri;    Protein kinase phylogeny;    Conserved eukaryote signalling;   
Others  :  1216344
DOI  :  10.1186/1471-2164-15-640
 received in 2014-01-24, accepted in 2014-07-08,  发布年份 2014
PDF
【 摘 要 】

Background

The current knowledge of eukaryote signalling originates from phenotypically diverse organisms. There is a pressing need to identify conserved signalling components among eukaryotes, which will lead to the transfer of knowledge across kingdoms. Two useful properties of a eukaryote model for signalling are (1) reduced signalling complexity, and (2) conservation of signalling components. The alga Ostreococcus tauri is described as the smallest free-living eukaryote. With less than 8,000 genes, it represents a highly constrained genomic palette.

Results

Our survey revealed 133 protein kinases and 34 protein phosphatases (1.7% and 0.4% of the proteome). We conducted phosphoproteomic experiments and constructed domain structures and phylogenies for the catalytic protein-kinases. For each of the major kinases families we review the completeness and divergence of O. tauri representatives in comparison to the well-studied kinomes of the laboratory models Arabidopsis thaliana and Saccharomyces cerevisiae, and of Homo sapiens. Many kinase clades in O. tauri were reduced to a single member, in preference to the loss of family diversity, whereas TKL and ABC1 clades were expanded. We also identified kinases that have been lost in A. thaliana but retained in O. tauri. For three, contrasting eukaryotic pathways – TOR, MAPK, and the circadian clock – we established the subset of conserved components and demonstrate conserved sites of substrate phosphorylation and kinase motifs.

Conclusions

We conclude that O. tauri satisfies our two central requirements. Several of its kinases are more closely related to H. sapiens orthologs than S. cerevisiae is to H. sapiens. The greatly reduced kinome of O. tauri is therefore a suitable model for signalling in free-living eukaryotes.

【 授权许可】

   
2014 Hindle et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150630040100269.pdf 2746KB PDF download
Figure 9. 93KB Image download
Figure 8. 93KB Image download
Figure 7. 70KB Image download
Figure 6. 74KB Image download
Figure 5. 78KB Image download
Figure 4. 95KB Image download
Figure 3. 86KB Image download
Figure 2. 36KB Image download
Figure 1. 73KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Hanks SK, Hunter T: Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J 1995, 9:576-596.
  • [2]Keshet Y, Seger R: The MAP Kinase Signaling Cascades: A System of Hundreds of Components Regulates a Diverse Array of Physiological Functions. In MAP Kinase Signaling Protocols. Methods in Molecular Biology, vol. 661. Edited by Seger R. Totowa: Humana Press; 2010:3-38.
  • [3]Breitkreutz A, Choi H, Sharom JR, Boucher L, Neduva V, Larsen B, Lin Z-Y, Breitkreutz B-J, Stark C, Liu G, Ahn J, Dewar-Darch D, Reguly T, Tang X, Almeida R, Qin ZS, Pawson T, Gingras A-C, Nesvizhskii AI, Tyers M: A global protein kinase and phosphatase interaction network in yeast. Science 2010, 328:1043-1046.
  • [4]Champion A, Kreis M, Mockaitis K, Picaud A, Henry Y: Arabidopsis kinome: after the casting. Funct Integr Genomics 2004, 4:163-187.
  • [5]Goldberg JM, Manning G, Liu A, Fey P, Pilcher KE, Xu Y, Smith JL: The Dictyostelium kinome–analysis of the protein kinases from a simple model organism. PLoS Genet 2006, 2:e38.
  • [6]Manning G, Plowman GD, Hunter T, Sudarsanam S: Evolution of protein kinase signaling from yeast to man. Trends Biochem Sci 2002, 27:514-520.
  • [7]Miranda-Saavedra D, Stark MJR, Packer JC, Vivares CP, Doerig C, Barton GJ: The complement of protein kinases of the microsporidium Encephalitozoon cuniculi in relation to those of Saccharomyces cerevisiae and Schizosaccharomyces pombe. BMC Genomics 2007, 8:309.
  • [8]Manning G, Reiner DS, Lauwaet T, Dacre M, Smith A, Zhai Y, Svard S, Gillin FD: The minimal kinome of Giardia lamblia illuminates early kinase evolution and unique parasite biology. Genome Biol 2011, 12:R66.
  • [9]Deutscher J, Saier MH Jr: Ser/Thr/Tyr protein phosphorylation in bacteria - for long time neglected, now well established. J Mol Microbiol Biotechnol 2005, 9:125-131.
  • [10]Kennelly PJ: Protein Ser/Thr/Tyr phosphorylation in the archaea. J Biol Chem 2014, 289:9480-9487.
  • [11]Kannan N, Taylor SS, Zhai Y, Venter JC, Manning G: Structural and functional diversity of the microbial kinome. PLoS Biol 2007, 5:e17.
  • [12]Scheeff ED, Bourne PE: Structural evolution of the protein kinase–like superfamily. PLoS Comput Biol 2005, 1:e49.
  • [13]Kumar MN, Jane W-N, Verslues PE: Role of the putative osmosensor Arabidopsis histidine kinase1 in dehydration avoidance and low-water-potential response. Plant Physiol 2013, 161:942-953.
  • [14]Hall BP, Shakeel SN, Amir M, Ul Haq N, Qu X, Schaller GE: Histidine kinase activity of the ethylene receptor ETR1 facilitates the ethylene response in Arabidopsis. Plant Physiol 2012, 159:682-695.
  • [15]Hanks SK, Quinn AM, Hunter T: The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 1988, 241:42-52.
  • [16]Leonard CJ, Aravind L, Koonin EV: Novel families of putative protein kinases in bacteria and archaea: evolution of the “eukaryotic” protein kinase superfamily. Genome Res 1998, 8:1038-1047.
  • [17]Brinkworth RI, Munn AL, Kobe B: Protein kinases associated with the yeast phosphoproteome. BMC Bioinformatics 2006, 7:47.
  • [18]Ghelis T: Signal processing by protein tyrosine phosphorylation in plants. Plant Signal Behav 2011, 6:942-951.
  • [19]Courties C, Vaquer A, Troussellier M, Lautier J, Chrétiennot-Dinet MJ, Neveux J, Machado C, Claustre H: Smallest eukaryotic organism. Nature 1994, 370:255-255.
  • [20]Palenik B, Grimwood J, Aerts A, Rouzé P, Salamov A, Putnam N, Dupont C, Jorgensen R, Derelle E, Rombauts S, Zhou K, Otillar R, Merchant SS, Podell S, Gaasterland T, Napoli C, Gendler K, Manuell A, Tai V, Vallon O, Piganeau G, Jancek S, Heijde M, Jabbari K, Bowler C, Lohr M, Robbens S, Werner G, Dubchak I, Pazour GJ, et al.: The tiny eukaryote Ostreococcus provides genomic insights into the paradox of plankton speciation. Proc Natl Acad Sci U S A 2007, 104:7705-7710.
  • [21]Keeling PJ, Burger G, Durnford DG, Lang BF, Lee RW, Pearlman RE, Roger AJ, Gray MW: The tree of eukaryotes. Trends Ecol Evol 2005, 20:670-676.
  • [22]Henderson GP, Gan L, Jensen GJ: 3-D ultrastructure of O. tauri: electron cryotomography of an entire eukaryotic cell. PLoS One 2007, 2:e749.
  • [23]Farinas B, Mary C, De Manes C-L O, Bhaud Y, Peaucellier G, Moreau H: Natural synchronisation for the study of cell division in the green unicellular alga Ostreococcus tauri. Plant Mol Biol 2006, 60:277-292.
  • [24]van Ooijen G, Knox K, Kis K, Bouget F-Y, Millar AJ: Genomic transformation of the picoeukaryote Ostreococcus tauri. J Vis Exp 2012, (65):e4074.
  • [25]Corellou F, Schwartz C, Motta J-P, Djouani-Tahri EB, Sanchez F, Bouget F-Y: Clocks in the green lineage: comparative functional analysis of the circadian architecture of the picoeukaryote ostreococcus. Plant Cell 2009, 21:3436-3449.
  • [26]Le Bihan T, Martin SF, Chirnside ES, van Ooijen G, Barrios-Llerena ME, O’Neill JS, Shliaha PV, Kerr LE, Millar AJ: Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri. J Proteomics 2011, 74:2060-2070.
  • [27]Martin SF, Munagapati VS, Salvo-Chirnside E, Kerr LE, Le Bihan T: Proteome turnover in the green alga Ostreococcus tauri by time course 15 N metabolic labeling mass spectrometry. J Proteome Res 2012, 11:476-486.
  • [28]O’Neill JS, van Ooijen G, Dixon LE, Troein C, Corellou F, Bouget F-Y, Reddy AB, Millar AJ: Circadian rhythms persist without transcription in a eukaryote. Nature 2011, 469:554-558.
  • [29]van Ooijen G, Dixon LE, Troein C, Millar AJ: Proteasome function is required for biological timing throughout the twenty-four hour cycle. Curr Biol 2011, 21:869-875.
  • [30]Troein C, Corellou F, Dixon LE, van Ooijen G, O’Neill JS, Bouget F-Y, Millar AJ: Multiple light inputs to a simple clock circuit allow complex biological rhythms. Plant J 2011, 66:375-385.
  • [31]van Ooijen G, Hindle M, Martin SF, Barrios-Llerena M, Sanchez F, Bouget F-Y, O’Neill JS, Bihan TL, Millar AJ: Functional analysis of casein kinase 1 in a minimal circadian system. PLoS One 2013, 8:e70021.
  • [32]van Ooijen G, Martin SF, Barrios-Llerena ME, Hindle M, Le Bihan T, O’Neill JS, Millar AJ: Functional analysis of the rodent CK1tau mutation in the circadian clock of a marine unicellular alga. BMC Cell Biol 2013, 14:46.
  • [33]Chen F, Mackey AJ, Stoeckert CJ, Roos DS: OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucl Acids Res 2006, 34(suppl 1):D363-D368.
  • [34]Shiu S-H, Bleecker AB: Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. PNAS 2001, 98:10763-10768.
  • [35]Miranda-Saavedra D, Barton GJ: Classification and functional annotation of eukaryotic protein kinases. Proteins Struct Funct Bioinformatics 2007, 68:893-914.
  • [36]Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S: The protein kinase complement of the human genome. Science 2002, 298:1912-1934.
  • [37]Tchieu JH, Fana F, Fink JL, Harper J, Nair TM, Niedner RH, Smith DW, Steube K, Tam TM, Veretnik S, Wang D, Gribskov M: The plantsP and plantsT functional genomics databases. Nucleic Acids Res 2003, 31:342-344.
  • [38]Liberti S, Sacco F, Calderone A, Perfetto L, Iannuccelli M, Panni S, Santonico E, Palma A, Nardozza AP, Castagnoli L, Cesareni G: HuPho: the human phosphatase portal. FEBS J 2013, 280:379-387.
  • [39]Lehti-Shiu MD, Zou C, Hanada K, Shiu S-H: Evolutionary history and stress regulation of plant receptor-like kinase/pelle genes. Plant Physiol 2009, 150:12-26.
  • [40]Lehti-Shiu MD, Shiu S-H: Diversity, classification and function of the plant protein kinase superfamily. Phil Trans R Soc B 2012, 367:2619-2639.
  • [41]Kosti I, Mandel-Gutfreund Y, Glaser F, Horwitz BA: Comparative analysis of fungal protein kinases and associated domains. BMC Genomics 2010, 11:133.
  • [42]Christie JM, Yang H, Richter GL, Sullivan S, Thomson CE, Lin J, Titapiwatanakun B, Ennis M, Kaiserli E, Lee OR, Adamec J, Peer WA, Murphy AS: Phot1 inhibition of ABCB19 primes lateral auxin fluxes in the shoot apex required for phototropism. PLoS Biol 2011, 9:e1001076.
  • [43]Gao Q, Yang Z, Zhou Y, Yin Z, Qiu J, Liang G, Xu C: Characterization of an Abc1 kinase family gene OsABC1-2 conferring enhanced tolerance to dark-induced stress in rice. Gene 2012, 498:155-163.
  • [44]Yang S, Zeng X, Li T, Liu M, Zhang S, Gao S, Wang Y, Peng C, Li L, Yang C: AtACDO1, an ABC1-like kinase gene, is involved in chlorophyll degradation and the response to photooxidative stress in Arabidopsis. J Exp Bot 2012, 63:3959-3973.
  • [45]Yang S: AtSIA1, an ABC1-like kinase, regulates salt response in Arabidopsis. Biologia 2012, 67:1107-1111.
  • [46]Lozano J-C, Schatt P, Botebol H, Vergé V, Lesuisse E, Blain S, Carré IA, Bouget F-Y: Efficient gene targeting and foreign DNA removal by homologous recombination in the picoeukaryote Ostreococcus. Plant J 2014, 76:6.
  • [47]van Dam TJP, Zwartkruis FJT, Bos JL, Snel B: Evolution of the TOR pathway. J Mol Evol 2011, 73:209-220.
  • [48]Shin S, Wolgamott L, Yu Y, Blenis J, Yoon S-O: Glycogen synthase kinase (GSK)-3 promotes p70 ribosomal protein S6 kinase (p70S6K) activity and cell proliferation. PNAS 2011, 108:E1204-E1213.
  • [49]Warmerdam DO, Kanaar R: Dealing with DNA damage: relationships between checkpoint and repair pathways. Mutat Res 2010, 704:2-11.
  • [50]Templeton GW, Moorhead GBG: The phosphoinositide-3-OH-kinase-related kinases of Arabidopsis thaliana. EMBO Rep 2005, 6:723-728.
  • [51]Lloyd JPB, Davies B: SMG1 is an ancient nonsense-mediated mRNA decay effector. Plant J 2013, 76:800-810.
  • [52]Lieber MR, Ma Y, Pannicke U, Schwarz K: Mechanism and regulation of human non-homologous DNA end-joining. Nat Rev Mol Cell Biol 2003, 4:712-720.
  • [53]Liu S, Opiyo SO, Manthey K, Glanzer JG, Ashley AK, Amerin C, Troksa K, Shrivastav M, Nickoloff JA, Oakley GG: Distinct roles for DNA-PK, ATM and ATR in RPA phosphorylation and checkpoint activation in response to replication stress. Nucl Acids Res 2012, 40:10780-10794.
  • [54]Marwedel T, Ishibashi T, Lorbiecke R, Jacob S, Sakaguchi K, Sauter M: Plant-specific regulation of replication protein A2 (OsRPA2) from rice during the cell cycle and in response to ultraviolet light exposure. Planta 2003, 217:457-465.
  • [55]Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL: DNA-PK is a DNA sensor for IRF-3-dependent innate immunity. ELife 2012, 1:e00047.
  • [56]Robbens S, Khadaroo B, Camasses A, Derelle E, Ferraz C, Inzé D, van de Peer Y, Moreau H: Genome-wide analysis of core cell cycle genes in the unicellular green alga Ostreococcus tauri. Mol Biol Evol 2005, 22:589-597.
  • [57]CristinaRodriguez M, Petersen M, Mundy J: Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 2010, 61:621-649.
  • [58]Seger R, Krebs EG: The MAPK signaling cascade. FASEB J 1995, 9:726-735.
  • [59]Lochhead PA, Kinstrie R, Sibbet G, Rawjee T, Morrice N, Cleghon V: A chaperone-dependent GSK3beta transitional intermediate mediates activation-loop autophosphorylation. Mol Cell 2006, 24:627-633.
  • [60]Saidi Y, Hearn TJ, Coates JC: Function and evolution of “green” GSK3/Shaggy-like kinases. Trends Plant Sci 2012, 17:39-46.
  • [61]Krishna P, Gloor G: The Hsp90 family of proteins in Arabidopsis thaliana. Cell Stress Chaperones 2001, 6:238-246.
  • [62]Dittrich ACN, Devarenne TP: Perspectives in PDK1 evolution. Plant Signal Behav 2012, 7:642-649.
  • [63]Rademacher EH, Offringa R: Evolutionary adaptations of plant AGC kinases: from light signaling to cell polarity regulation. Front Plant Sci 2012, 3:250.
  • [64]Mora A, Komander D, van Aalten DMF, Alessi DR: PDK1, the master regulator of AGC kinase signal transduction. Semin Cell Dev Biol 2004, 15:161-170.
  • [65]Biondi RM, Kieloch A, Currie RA, Deak M, Alessi DR: The PIF-binding pocket in PDK1 is essential for activation of S6K and SGK, but not PKB. EMBO J 2001, 20:4380-4390.
  • [66]Osborne BW, Wu J, McFarland CJ, Nickl CK, Sankaran B, Casteel DE, Woods VL, Kornev AP, Taylor SS, Dostmann WR: Crystal structure of cGMP-dependent protein kinase reveals novel site of interchain communication. Structure 2011, 19:1317-1327.
  • [67]Taylor SS, Ilouz R, Zhang P, Kornev AP: Assembly of allosteric macromolecular switches: lessons from PKA. Nat Rev Mol Cell Biol 2012, 13:646-658.
  • [68]Zimmermann B, Chiorini JA, Ma Y, Kotin RM, Herberg FW: PrKX is a novel catalytic subunit of the cAMP-dependent protein kinase regulated by the regulatory subunit type I. J Biol Chem 1999, 274:5370-5378.
  • [69]Hornbeck PV, Chabra I, Kornhauser JM, Skrzypek E, Zhang B: PhosphoSite: a bioinformatics resource dedicated to physiological protein phosphorylation. Proteomics 2004, 4:1551-1561.
  • [70]Wullschleger S, Loewith R, Hall MN: TOR signaling in growth and metabolism. Cell 2006, 124:471-484.
  • [71]Xiong Y, Sheen J: Rapamycin and glucose-target of rapamycin (TOR) protein signaling in plants. J Biol Chem 2012, 287:2836-2842.
  • [72]Loewith R: 9 - TORC1 Signaling in Budding Yeast. In The Enzymes. Volume 27. Edited by Michael Hall N. Fuyuhiko Tamanoi: Academic Press; 2010:147-175.
  • [73]Cybulski N, Hall MN: TOR complex 2: a signaling pathway of its own. Trends Biochem Sci 2009, 34:620-627.
  • [74]Alessi DR, Kozlowski MT, Weng QP, Morrice N, Avruch J: 3-Phosphoinositide-dependent protein kinase 1 (PDK1) phosphorylates and activates the p70 S6 kinase in vivo and in vitro. Curr Biol 1998, 8:69-81.
  • [75]Pullen N, Dennis PB, Andjelkovic M, Dufner A, Kozma SC, Hemmings BA, Thomas G: Phosphorylation and activation of p70s6k by PDK1. Science 1998, 279:707-710.
  • [76]Burnett PE, Barrow RK, Cohen NA, Snyder SH, Sabatini DM: RAFT1 phosphorylation of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A 1998, 95:1432-1437.
  • [77]Moser BA, Dennis PB, Pullen N, Pearson RB, Williamson NA, Wettenhall RE, Kozma SC, Thomas G: Dual requirement for a newly identified phosphorylation site in p70s6k. Mol Cell Biol 1997, 17:5648-5655.
  • [78]Casamayor A, Morrice NA, Alessi DR: Phosphorylation of Ser-241 is essential for the activity of 3-phosphoinositide-dependent protein kinase-1: identification of five sites of phosphorylation in vivo. Biochem J 1999, 342(Pt 2):287-292.
  • [79]Sato S, Fujita N, Tsuruo T: Regulation of kinase activity of 3-phosphoinositide-dependent protein kinase-1 by binding to 14-3-3. J Biol Chem 2002, 277:39360-39367.
  • [80]Otterhag L, Gustavsson N, Alsterfjord M, Pical C, Lehrach H, Gobom J, Sommarin M: Arabidopsis PDK1: identification of sites important for activity and downstream phosphorylation of S6 kinase. Biochimie 2006, 88:11-21.
  • [81]Jiang Y, Broach JR: Tor proteins and protein phosphatase 2A reciprocally regulate Tap42 in controlling cell growth in yeast. EMBO J 1999, 18:2782-2792.
  • [82]Peterson RT, Desai BN, Hardwick JS, Schreiber SL: Protein phosphatase 2A interacts with the 70-kDa S6 kinase and is activated by inhibition of FKBP12–rapamycinassociated protein. PNAS 1999, 96:4438-4442.
  • [83]Cygnar KD, Gao X, Pan D, Neufeld TP: The phosphatase subunit tap42 functions independently of target of rapamycin to regulate cell division and survival in Drosophila. Genetics 2005, 170:733-740.
  • [84]Hrabak EM, Chan CWM, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu J-K, Harmon AC: The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 2003, 132:666-680.
  • [85]Klimecka M, Muszyńska G: Structure and functions of plant calcium-dependent protein kinases. Acta Biochim Pol 2007, 54:219-233.
  • [86]Ghillebert R, Swinnen E, Wen J, Vandesteene L, Ramon M, Norga K, Rolland F, Winderickx J: The AMPK/SNF1/SnRK1 fuel gauge and energy regulator: structure, function and regulation. FEBS J 2011, 278:3978-3990.
  • [87]Usaite R, Jewett MC, Oliveira AP, Yates JR, Olsson L, Nielsen J: Reconstruction of the yeast Snf1 kinase regulatory network reveals its role as a global energy regulator. Mol Syst Biol 2009, 5:319.
  • [88]Polge C, Thomas M: SNF1/AMPK/SnRK1 kinases, global regulators at the heart of energy control? Trends Plant Sci 2007, 12:20-28.
  • [89]Hamel L-P, Sheen J, Séguin A: Ancient signals: comparative genomics of green plant CDPKs. Trends Plant Sci 2013, 19:79-89.
  • [90]Kanchiswamy CN, Takahashi H, Quadro S, Maffei ME, Bossi S, Bertea C, Zebelo SA, Muroi A, Ishihama N, Yoshioka H, Boland W, Takabayashi J, Endo Y, Sawasaki T, Arimura G: Regulation of Arabidopsis defense responses against Spodoptera littoralis by CPK-mediated calcium signaling. BMC Plant Biology 2010, 10:97.
  • [91]Mori IC, Murata Y, Yang Y, Munemasa S, Wang Y-F, Andreoli S, Tiriac H, Alonso JM, Harper JF, Ecker JR, Kwak JM, Schroeder JI: CDPKs CPK6 and CPK3 function in ABA regulation of guard cell S-type anion- and Ca2 + − permeable channels and stomatal closure. PLoS Biol 2006, 4:e327.
  • [92]Munemasa S, Hossain MA, Nakamura Y, Mori IC, Murata Y: The Arabidopsis calcium-dependent protein kinase, CPK6, functions as a positive regulator of methyl jasmonate signaling in guard cells. Plant Physiol 2011, 155:553-561.
  • [93]Zhu S-Y, Yu X-C, Wang X-J, Zhao R, Li Y, Fan R-C, Shang Y, Du S-Y, Wang X-F, Wu F-Q, Xu Y-H, Zhang X-Y, Zhang D-P: Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis. Plant Cell 2007, 19:3019-3036.
  • [94]Khan M, Rozhon W, Bigeard J, Pflieger D, Husar S, Pitzschke A, Teige M, Jonak C, Hirt H, Poppenberger B: Brassinosteroid-regulated GSK3/shaggy-like kinases phosphorylate mitogen-activated protein (MAP) kinase kinases, which control stomata development in Arabidopsis thaliana. J Biol Chem 2013, 288:7519-7527.
  • [95]Kim T-W, Michniewicz M, Bergmann DC, Wang Z-Y: Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 2012, 482:419-422.
  • [96]Champion A, Picaud A, Henry Y: Reassessing the MAP3K and MAP4K relationships. Trends Plant Sci 2004, 9:123-129.
  • [97]Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ: Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 2003, 33:221-233.
  • [98]Liu Y, Bassham DC: TOR is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One 2010, 5:e11883.
  • [99]Díaz-Troya S, Pérez-Pérez ME, Florencio FJ, Crespo JL: The role of TOR in autophagy regulation from yeast to plants and mammals. Autophagy 2008, 4:851-865.
  • [100]Rudolf F, Pelet S, Peter M: Regulation of MAPK Signaling in Yeast. In Stress-Activated Protein Kinases, 20. Edited by Posas F, Nebreda AR. Berlin: Springer; 2008:187-204.
  • [101]Zheng CF, Guan KL: Activation of MEK family kinases requires phosphorylation of two conserved Ser/Thr residues. EMBO J 1994, 13:1123-1131.
  • [102]Kim T-W, Guan S, Sun Y, Deng Z, Tang W, Shang J-X, Sun Y, Burlingame AL, Wang Z-Y: Brassinosteroid signal transduction from cell surface receptor kinases to nuclear transcription factors. Nat Cell Biol 2009, 11:1254-1260.
  • [103]Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ: The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 2012, 8:574.
  • [104]Cheong JK, Virshup DM: Casein kinase 1: complexity in the family. Int J Biochem Cell Biol 2011, 43:465-469.
  • [105]Behrend L, Stöter M, Kurth M, Rutter G, Heukeshoven J, Deppert W, Knippschild U: Interaction of casein kinase 1 delta (CK1delta) with post-Golgi structures, microtubules and the spindle apparatus. Eur J Cell Biol 2000, 79:240-251.
  • [106]Ben-Nissan G, Cui W, Kim D-J, Yang Y, Yoo B-C, Lee J-Y: Arabidopsis casein kinase 1-like 6 contains a microtubule-binding domain and affects the organization of cortical microtubules. Plant Physiol 2008, 148:1897-1907.
  • [107]Hirota T, Lee JW, Lewis WG, Zhang EE, Breton G, Liu X, Garcia M, Peters EC, Etchegaray J-P, Traver D, Schultz PG, Kay SA: High-throughput chemical screen identifies a novel potent modulator of cellular circadian rhythms and reveals CKIα as a clock regulatory kinase. PLoS Biol 2010, 8:e1000559.
  • [108]Lee J-Y: Versatile casein kinase 1. Plant Signal Behav 2009, 4:652-654.
  • [109]Syed S, Saez L, Young MW: Kinetics of doubletime kinase-dependent degradation of the Drosophila period protein. J Biol Chem 2011. jbc.M111.243618
  • [110]Querfurth C, Diernfellner ACR, Gin E, Malzahn E, Höfer T, Brunner M: Circadian conformational change of the Neurospora clock protein FREQUENCY triggered by clustered hyperphosphorylation of a basic domain. Mol Cell 2011, 43:713-722.
  • [111]Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick RS, Shadwick L, Schoch CL, Smirnov A, Spiegel FW: The revised classification of eukaryotes. J Eukaryot Microbiol 2012, 59:429-493.
  • [112]Meggio F, Pinna LA: One-thousand-and-one substrates of protein kinase CK2? FASEB J 2003, 17:349-368.
  • [113]van Ooijen G, Millar AJ: Non-transcriptional oscillators in circadian timekeeping. Trends Biochem Sci 2012, 37:484-492.
  • [114]Lu SX, Liu H, Knowles SM, Li J, Ma L, Tobin EM, Lin C: A role for protein kinase CK2 alpha subunits in the Arabidopsis circadian clock. Plant Physiol 2011.
  • [115]Sugano S, Andronis C, Green RM, Wang ZY, Tobin EM: Protein kinase CK2 interacts with and phosphorylates the Arabidopsis circadian clock-associated 1 protein. Proc Natl Acad Sci U S A 1998, 95:11020-11025.
  • [116]Sugano S, Andronis C, Ong MS, Green RM, Tobin EM: The protein kinase CK2 is involved in regulation of circadian rhythms in Arabidopsis. PNAS 1999, 96:12362-12366.
  • [117]Mehra A, Shi M, Baker CL, Colot HV, Loros JJ, Dunlap JC: A role for casein kinase 2 in the mechanism underlying circadian temperature compensation. Cell 2009, 137:749-760.
  • [118]Portolés S, Más P: The functional interplay between protein kinase CK2 and CCA1 transcriptional activity is essential for clock temperature compensation in Arabidopsis. PLoS Genet 2010, 6:e1001201.
  • [119]Lin J-M, Kilman VL, Keegan K, Paddock B, Emery-Le M, Rosbash M, Allada R: A role for casein kinase 2α in the Drosophila circadian clock. Nature 2002, 420:816-820.
  • [120]Akten B, Jauch E, Genova GK, Kim EY, Edery I, Raabe T, Jackson FR: A role for CK2 in the Drosophila circadian oscillator. Nat Neurosci 2003, 6:251-257.
  • [121]Maier B, Wendt S, Vanselow JT, Wallach T, Reischl S, Oehmke S, Schlosser A, Kramer A: A large-scale functional RNAi screen reveals a role for CK2 in the mammalian circadian clock. Genes Dev 2009, 23:708-718.
  • [122]Lowrey PL, Shimomura K, Antoch MP, Yamazaki S, Zemenides PD, Ralph MR, Menaker M, Takahashi JS: Positional syntenic cloning and functional characterization of the mammalian circadian mutation tau. Science 2000, 288:483-491.
  • [123]Gallego M, Eide EJ, Woolf MF, Virshup DM, Forger DB: An opposite role for tau in circadian rhythms revealed by mathematical modeling. Proc Natl Acad Sci U S A 2006, 103:10618-10623.
  • [124]Jones CR, Campbell SS, Zone SE, Cooper F, DeSano A, Murphy PJ, Jones B, Czajkowski L, Ptácek LJ: Familial advanced sleep-phase syndrome: A short-period circadian rhythm variant in humans. Nat Med 1999, 5:1062-1065.
  • [125]Toh KL, Jones CR, He Y, Eide EJ, Hinz WA, Virshup DM, Ptácek LJ, Fu YH: An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 2001, 291:1040-1043.
  • [126]Xu Y, Padiath QS, Shapiro RE, Jones CR, Wu SC, Saigoh N, Saigoh K, Ptácek LJ, Fu Y-H: Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature 2005, 434:640-644.
  • [127]Khadaroo B, Robbens S, Ferraz C, Derelle E, Eychenié S, Cooke R, Peaucellier G, Delseny M, Demaille J, van de Peer Y, Picard A, Moreau H: The first green lineage cdc25 dual-specificity phosphatase. Cell Cycle 2004, 3:513-518.
  • [128]Fischer S, Brunk BP, Chen F, Gao X, Harb OS, Iodice JB, Shanmugam D, Roos DS, Stoeckert CJ: Using OrthoMCL to Assign Proteins to OrthoMCL-DB Groups or to Cluster Proteomes Into New Ortholog Groups. In Current Protocols in Bioinformatics. Edited by Bateman A, Pearson WR, Stein LD, Stormo GD, Yates JR. Hoboken: John Wiley & Sons, Inc; 2002.
  • [129]Vilella AJ, Severin J, Ureta-Vidal A, Heng L, Durbin R, Birney E: EnsemblCompara GeneTrees: complete, duplication-aware phylogenetic trees in vertebrates. Genome Res 2009, 19:327-335.
  • [130]Rasko DA, Myers GS, Ravel J: Visualization of comparative genomic analyses by BLAST score ratio. BMC Bioinformatics 2005, 6:2.
  • [131]Eddy SR: Accelerated Profile HMM Searches. PLoS Comput Biol 2011, 7:e1002195.
  • [132]Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A: The Pfam protein families database. Nucl Acids Res 2010, 38(Suppl 1):D211-D222.
  • [133]Hunter T, Plowman GD: The protein kinases of budding yeast: six score and more. Trends Biochem Sci 1997, 22:18-22.
  • [134]Katoh K, Toh H: Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 2010, 26:1899-1900.
  • [135]Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ: Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25:1189-1191.
  • [136]Troshin PV, Procter JB, Barton GJ: Java bioinformatics analysis web services for multiple sequence alignment–JABAWS:MSA. Bioinformatics 2011, 27:2001-2002.
  • [137]Penn O, Privman E, Landan G, Graur D, Pupko T: An alignment confidence score capturing robustness to guide tree uncertainty. Mol Biol Evol 2010, 27:1759-1767.
  • [138]Stamatakis A, Hoover P, Rougemont J: A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 2008, 57:758-771.
  • [139]Whelan S, Goldman N: A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 2001, 18:691-699.
  • [140]Cox J, Mann M: MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 2008, 26:1367-1372.
  文献评价指标  
  下载次数:47次 浏览次数:10次