期刊论文详细信息
BMC Cancer
The effects of conjugate and light dose on photo-immunotherapy induced cytotoxicity
Takahito Nakajima1  Kazuhide Sato1  Hirofumi Hanaoka1  Rira Watanabe1  Toshiko Harada1  Peter L Choyke1  Hisataka Kobayashi1 
[1] Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Bldg. 10, Room B3B69, MSC 1088, Bethesda, Maryland 20892-1088, USA
关键词: Cytotoxicity;    Necrosis;    Light dose;    Near infrared light;    Photoimmunotherapy;   
Others  :  858759
DOI  :  10.1186/1471-2407-14-389
 received in 2014-03-18, accepted in 2014-05-20,  发布年份 2014
PDF
【 摘 要 】

Background

Photoimmunotherapy (PIT) is a highly cell-selective cancer therapy, which employs monoclonal antibodies conjugated to a potent photosensitizer (mAb-IR700). Once the conjugate has bound to the target cell, exposure to near infrared (NIR) light induces necrosis only in targeted cells with minimal damage to adjacent normal cells in vivo. Herein, we report on the effect of altering mAb-IR700 and light power and dose on effectiveness of PIT.

Methods

For evaluating cytotoxicity, we employed ATP-dependent bioluminescence imaging using a luciferase-transfected MDA-MB-468luc cell line, which expresses EGFR and luciferase. In in vitro experiments, panitumumab-IR700 (Pan-IR700) concentration was varied in combination with varying NIR light doses administered by an LED at one of three power settings, 100 mA and 400 mA continuous wave and 1733 mA intermittent wave. For in vivo experiments, the MDA-MB-468luc orthotopic breast cancer was treated with varying doses of Pan-IR700 and light.

Results

The in vitro cell study demonstrated that PIT induced cytotoxicity depended on light dose, when the conjugate concentration was kept constant. Increasing the dose of Pan-IR700 allowed lowering of the light dose to achieve equal effects thus indicating that for a given level of efficacy, the conjugate concentration multiplied by the light dose was a constant. A similar relationship between conjugate and light dose was observed in vivo.

Conclusions

The efficacy of PIT is defined by the product of the number of bound antibody conjugates and the dose of NIR light and can be achieve equally with continuous and pulse wave LED light using different power densities.

【 授权许可】

   
2014 Nakajima et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140724021857169.pdf 1518KB PDF download
63KB Image download
42KB Image download
70KB Image download
58KB Image download
60KB Image download
【 图 表 】

【 参考文献 】
  • [1]Mitsunaga M, Ogawa M, Kosaka N, Rosenblum LT, Choyke PL, Kobayashi H: Cancer cell-selective in vivo near infrared photoimmunotherapy targeting specific membrane molecules. Nat Med 2011, 17:1685-1691.
  • [2]Nakajima T, Sano K, Choyke PL, Kobayashi H: Improving the efficacy of Photoimmunotherapy (PIT) using a cocktail of antibody conjugates in a multiple antigen tumor model. Theranostics 2013, 3:357-365.
  • [3]Mitsunaga M, Nakajima T, Sano K, Choyke PL, Kobayashi H: Near-infrared theranostic photoimmunotherapy (PIT): repeated exposure of light enhances the effect of immunoconjugate. Bioconjug Chem 2012, 23:604-609.
  • [4]Mitsunaga M, Nakajima T, Sano K, Kramer-Marek G, Choyke PL, Kobayashi H: Immediate in vivo target-specific cancer cell death after near infrared photoimmunotherapy. BMC Cancer 2012, 12:345. BioMed Central Full Text
  • [5]Sano K, Mitsunaga M, Nakajima T, Choyke PL, Kobayashi H: Acute Cytotoxic Effects of Photoimmunotherapy Assessed by 18 F-FDG PET. J Nucl Med 2013, 54:770-775.
  • [6]Lyakhov I, Zielinski R, Kuban M, Kramer-Marek G, Fisher R, Chertov O, Bindu L, Capala J: HER2- and EGFR-specific affiprobes: novel recombinant optical probes for cell imaging. Chembiochem 2010, 11:345-350.
  • [7]Hoffman RM: The multiple uses of fluorescent proteins to visualize cancer in vivo. Nat Rev Cancer 2005, 5:796-806.
  • [8]Hoffman RM, Yang M: Subcellular imaging in the live mouse. Nat Protoc 2006, 1:775-782.
  • [9]Jiang P, Yamauchi K, Yang M, Tsuji K, Xu M, Maitra A, Bouvet M, Hoffman RM: Tumor cells genetically labeled with GFP in the nucleus and RFP in the cytoplasm for imaging cellular dynamics. Cell Cycle 2006, 5:1198-1201.
  • [10]Yamamoto N, Jiang P, Yang M, Xu M, Yamauchi K, Tsuchiya H, Tomita K, Wahl GM, Moossa AR, Hoffman RM: Cellular dynamics visualized in live cells in vitro and in vivo by differential dual-color nuclear-cytoplasmic fluorescent-protein expression. Cancer Res 2004, 64:4251-4256.
  • [11]Kimura H, Lee C, Hayashi K, Yamauchi K, Yamamoto N, Tsuchiya H, Tomita K, Bouvet M, Hoffman RM: UV light killing efficacy of fluorescent protein-expressing cancer cells in vitro and in vivo. J Cell Biochem 2010, 110:1439-1446.
  • [12]Tsai MH, Aki R, Amoh Y, Hoffman RM, Katsuoka K, Kimura H, Lee C, Chang CH: GFP-fluorescence-guided UVC irradiation inhibits melanoma growth and angiogenesis in nude mice. Anticancer Res 2010, 30:3291-3294.
  • [13]Shimomura O: Discovery of green fluorescent protein (GFP) (Nobel Lecture). Angew Chem Int Ed Engl 2009, 48:5590-5602.
  • [14]Momiyama M, Suetsugu A, Kimura H, Kishimoto H, Aki R, Yamada A, Sakurada H, Chishima T, Bouvet M, Bulgakova NN, Endo I, Hoffman RM: Fluorescent proteins enhance UVC PDT of cancer cells. Anticancer Res 2012, 32:4327-4330.
  • [15]Momiyama M, Suetsugu A, Kimura H, Kishimoto H, Aki R, Yamada A, Sakurada H, Chishima T, Bouvet M, Endo I, Hoffman RM: Imaging the efficacy of UVC irradiation on superficial brain tumors and metastasis in live mice at the subcellular level. J Cell Biochem 2013, 114:428-434.
  文献评价指标  
  下载次数:87次 浏览次数:75次