期刊论文详细信息
Journal of Nanobiotechnology
Synthesis, characterization and toxicological evaluation of maltodextrin capped cadmium sulfide nanoparticles in human cell lines and chicken embryos
Research
Patricia Rodríguez-Fragoso1  Lourdes Rodríguez-Fragoso2  Angel León-Buitimea2  Jorge Reyes-Esparza2 
[1] Departamento de Fisica, CINVESTAV - I.P.N Apartado, Postal 14-740, 07000, Mexico, Mexico;Facultad de Farmacia, Universidad Autónoma del Estado de Morelos Cuernavaca, 62210, Mexico, Mexico;
关键词: Semiconductor quantum dot;    Nanoparticles;    Cadmiun sulfide;    Cytotoxicity;    Cell proliferation;    Oxidative stress;    Radical oxygen species;    Apoptosis;    Necrosis;    Embriotoxicity;   
DOI  :  10.1186/1477-3155-10-47
 received in 2012-07-02, accepted in 2012-12-06,  发布年份 2012
来源: Springer
PDF
【 摘 要 】

BackgroundSemiconductor Quantum dots (QDs) have become quite popular thanks to their properties and wide use in biological and biomedical studies. However, these same properties entail new challenges in understanding, predicting, and managing potential adverse health effects following exposure. Cadmium and selenium, which are the major components of the majority of quantum dots, are known to be acutely and chronically toxic to cells and organisms. Protecting the core of nanoparticles can, to some degree, control the toxicity related to cadmium and selenium leakage.ResultsThis study successfully synthesized and characterized maltodextrin coated cadmium sulfide semiconductor nanoparticles. The results show that CdS-MD nanoparticles are cytotoxic and embryotoxic. CdS-MD nanoparticles in low concentrations (4.92 and 6.56 nM) lightly increased the number of HepG2 cell. A reduction in MDA-MB-231 cells was observed with concentrations higher than 4.92 nM in a dose response manner, while Caco-2 cells showed an important increase starting at 1.64 nM. CdS-MD nanoparticles induced cell death by apoptosis and necrosis in MDA-MD-231 cells starting at 8.20 nM concentrations in a dose response manner. The exposure of these cells to 11.48-14.76 nM of CdS-MD nanoparticles induced ROS production. The analysis of cell proliferation in MDA-MB-231 showed different effects. Low concentrations (1.64 nM) increased cell proliferation (6%) at 7 days (p < 0.05). However, higher concentrations (>4.92 nM) increased cell proliferation in a dose response manner (15-30%) at 7 days. Exposures of chicken embryos to CdS-MD nanoparticles resulted in a dose-dependent increase in anomalies that, starting at 9.84 nM, centered on the heart, central nervous system, placodes, neural tube and somites. No toxic alterations were observed with concentrations of < 3.28 nM, neither in cells nor chicken embryos.ConclusionsOur results indicate that CdS-MD nanoparticles induce cell death and alter cell proliferation in human cell lines at concentrations higher than 4.92 nM. We also demonstrated that they are embryotoxic. However, no toxic effects were observed with doses lower than 3.28 nM in neither cells nor chicken embryos. The CdS-MD nanoparticles used in this study can be potentially used in bio-imaging applications. However, further studies using mammalian species are required in order to discard more toxic effects.

【 授权许可】

Unknown   
© Rodriguez-Fragoso et al.; licensee BioMed Central Ltd. 2012. This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

【 预 览 】
附件列表
Files Size Format View
RO202311109184043ZK.pdf 6208KB PDF download
【 参考文献 】
  • [1]
  • [2]
  • [3]
  • [4]
  • [5]
  • [6]
  • [7]
  • [8]
  • [9]
  • [10]
  • [11]
  • [12]
  • [13]
  • [14]
  • [15]
  • [16]
  • [17]
  • [18]
  • [19]
  • [20]
  • [21]
  • [22]
  • [23]
  • [24]
  • [25]
  • [26]
  • [27]
  • [28]
  • [29]
  • [30]
  • [31]
  • [32]
  • [33]
  • [34]
  • [35]
  • [36]
  • [37]
  • [38]
  • [39]
  • [40]
  • [41]
  • [42]
  • [43]
  • [44]
  • [45]
  • [46]
  • [47]
  • [48]
  • [49]
  • [50]
  • [51]
  • [52]
  文献评价指标  
  下载次数:8次 浏览次数:0次