BMC Neuroscience | |
Defects in the retina of Niemann-pick type C 1 mutant mice | |
Jiankai Luo1  Martin Witt3  Arndt Rolfs1  Rudolf Guthoff4  Marcus Frank5  Andreas Wree3  Jan Lukas1  Marina Hovakimyan2  Lucy Ma1  Xin Yan1  | |
[1] Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Strasse 20, Rostock, D-18147, Germany;Institute for Biomedical Engineering, Rostock University Medical Center, F.-Barnewitz Strasse 4, Rostock, D-18119, Germany;Department of Anatomy, Rostock University Medical Center, Gertrudenstrsse 9, Rostock, D-18055, Germany;Department of Ophthalmology, Rostock University Medical Center, Doberaner Strasse 140, Rostock, D-18057, Germany;Electron Microscopy Center, Rostock University Medical Center, Strempelstr. 14, Rostock, D-18057, Germany | |
关键词: Neurodegeneration; Optic nerve; Retina; Npc1; | |
Others : 1090465 DOI : 10.1186/s12868-014-0126-2 |
|
received in 2014-06-19, accepted in 2014-11-12, 发布年份 2014 | |
【 摘 要 】
Background
Niemann-Pick type C1 (NPC1) disease is an inherited lysosomal storage disease caused by mutation of the Npc1 gene, resulting in a progressive accumulation of unesterified cholesterol and glycolipids in lysosomes of multiple tissues and leading to neurodegeneration and other disease. In Npc1 mutant mice, retinal degeneration including impaired visual function, lipofuscin accumulation in the pigment epithelium and ganglion cells as well as photoreceptor defects has been found. However, the pathologies of other individual cell types of the retina in Npc1 mutant mice are still not fully clear. We hypothesized that horizontal cells, amacrine cells, bipolar cells and glial cells are also affected in the retina of Npc1 mutant mice.
Results
Immunohistochemistry and electron microscopy were used to investigate pathologies of ganglion cells, horizontal cells, amacrine cells, bipolar cells, and optic nerves as well as altered activity of glial cells in Npc1 mutant mice.
Electron microscopy reveals that electron-dense inclusions are generally accumulated in ganglion cells, bipolar cells, Müller cells, and in the optic nerve. Furthermore, abnormal arborisation and ectopic processes of horizontal and amacrine cells as well as defective bipolar cells are observed by immunohistochemistry for specific cellular markers. Furthermore, hyperactivity of glial cells, including astrocytes, microglial cells, and Müller cells, is also revealed.
Conclusions
Our data extend previous findings to show multiple defects in the retina of Npc1 mutant mice, suggesting an important role of Npc1 protein in the normal function of the retina.
【 授权许可】
2014 Yan et al.; licensee BioMed Central Ltd.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150128161120875.pdf | 4711KB | download | |
Figure 9. | 173KB | Image | download |
Figure 8. | 158KB | Image | download |
Figure 7. | 139KB | Image | download |
Figure 6. | 178KB | Image | download |
Figure 5. | 195KB | Image | download |
Figure 4. | 129KB | Image | download |
Figure 3. | 159KB | Image | download |
Figure 2. | 140KB | Image | download |
Figure 1. | 179KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
【 参考文献 】
- [1]Carstea ED, Morris JA, Coleman KG, Loftus SK, Zhang D, Cummings C, Gu J, Rosenfeld MA, Pavan WJ, Krizman DB, Nagle J, Polymeropoulos MH, Sturley SL, Ioannou YA, Higgins ME, Comly M, Cooney A, Brown A, Kaneski CR, Blanchette-Mackie EJ, Dwyer NK, Neufeld EB, Chang TY, Liscum L, Strauss JF 3rd, Ohno K, Zeigler M, Carmi R, Sokol J, Markie D, et al.: Niemann-Pick C1 disease gene: homology to mediators of cholesterol homeostasis. Science 1997, 277:228-231.
- [2]Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Pentchev PG, Pavan WJ: Murine model of Niemann-pick C disease: mutation in a cholesterol homeostasis gene. Science 1997, 277:232-235.
- [3]Naureckiene S, Sleat DE, Lackland H, Fensom A, Vanier MT, Wattiaux R, Jadot M, Lobel P: Identification of HE1 as the second gene of Niemann-pick C disease. Science 2000, 290:2298-2301.
- [4]Scott C, Ioannou YA: The NPC1 protein: structure implies function. Biochim Biophys Acta 2004, 1685:8-13.
- [5]Vance JE, Karten B, Hayashi H: Lipid dynamics in neurons. Biochem Soc Trans 2006, 34:399-403.
- [6]Karten B, Vance DE, Campenot RB, Vance JE: Trafficking of cholesterol from cell bodies to distal axons in Niemann pick C1-deficient neurons. J Biol Chem 2003, 278:4168-4175.
- [7]Li H, Repa JJ, Valasek MA, Beltroy EP, Turley SD, German DC, Dietschy JM: Molecular, anatomical, and biochemical events associated with neurodegeneration in mice with Niemann-pick type C disease. J Neuropathol Exp Neurol 2005, 64:323-333.
- [8]Paul CA, Boegle AK, Maue RA: Before the loss: neuronal dysfunction in Niemann-pick Type C disease. Biochim Biophys Acta 2004, 1685:63-76.
- [9]Takikita S, Fukuda T, Mohri I, Yagi T, Suzuki K: Perturbed myelination process of premyelinating oligodendrocyte in Niemann-pick type C mouse. J Neuropathol Exp Neurol 2004, 63:660-673.
- [10]Baudry M, Yao Y, Simmons D, Liu J, Bi X: Postnatal development of inflammation in a murine model of Niemann-pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol 2003, 184:887-903.
- [11]Sarna JR, Larouche M, Marzban H, Sillitoe RV, Rancourt DE, Hawkes R: Patterned Purkinje cell degeneration in mouse models of Niemann-pick type C disease. J Comp Neurol 2003, 456:279-291.
- [12]Yan X, Yang F, Lukas J, Witt M, Wree A, Rolfs A, Luo J: Hyperactive glial cells contribute to axonal pathologies in the spinal cord of Npc1 mutant mice. Glia 2014, 62:1024-1040.
- [13]Hovakimyan M, Meyer A, Lukas J, Luo J, Gudziol V, Hummel T, Rolfs A, Wree A, Witt M: Olfactory deficits in Niemann-pick type C1 (NPC1) disease. PLoS One 2013, 8:e82216.
- [14]Kaneko A: Physiology of the retina. Annu Rev Neurosci 1979, 2:169-191.
- [15]Biswas G, Jeon OY, Lee WS, Kim DC, Kim KT, Lee S, Chang S, Chung SK: Novel guanidine-containing molecular transporters based on lactose scaffolds: lipophilicity effect on the intracellular organellar selectivity. Chemistry 2008, 14:9161-9168.
- [16]Falke K, Buttner A, Schittkowski M, Stachs O, Kraak R, Zhivov A, Rolfs A, Guthoff R: The microstructure of cornea verticillata in Fabry disease and amiodarone-induced keratopathy: a confocal laser-scanning microscopy study. Graefes Arch Clin Exp Ophthalmol 2009, 247:523-534.
- [17]Sodi A, Ioannidis AS, Mehta A, Davey C, Beck M, Pitz S: Ocular manifestations of Fabry's disease: data from the Fabry outcome survey. Br J Ophthalmol 2007, 91:210-214.
- [18]Brady RO: Ophthalmologic aspects of lipid storage diseases. Ophthalmology 1978, 85:1007-1013.
- [19]Courtney RJ, Pennesi ME: Retinal dystrophy in 2 brothers with alpha-Mannosidosis. Arch Ophthalmol 2011, 129:799-802.
- [20]Wang TJ, Chen MS, Shih YF, Hwu WL, Lai MY: Fundus abnormalities in a patient with type I Gaucher's disease with 12-year follow-up. Am J Ophthalmol 2005, 139:359-362.
- [21]Ashworth JL, Biswas S, Wraith E, Lloyd IC: Mucopolysaccharidoses and the eye. Surv Ophthalmol 2006, 51:1-17.
- [22]Claudepierre T, Paques M, Simonutti M, Buard I, Sahel J, Maue RA, Picaud S, Pfrieger FW: Lack of Niemann-pick type C1 induces age-related degeneration in the mouse retina. Mol Cell Neurosci 2010, 43:164-176.
- [23]Yan X, Lukas J, Witt M, Wree A, Hubner R, Frech M, Kohling R, Rolfs A, Luo JK: Decreased expression of myelin gene regulatory factor in Niemann-pick type C 1 mouse. Metab Brain Dis 2011, 26:299-306.
- [24]Pressey SN, Smith DA, Wong AM, Platt FM, Cooper JD: Early glial activation, synaptic changes and axonal pathology in the thalamocortical system of Niemann-pick type C1 mice. Neurobiol Dis 2012, 45:1086-1100.
- [25]Canola K, Angenieux B, Tekaya M, Quiambao A, Naash MI, Munier FL, Schorderet DF, Arsenijevic Y: Retinal stem cells transplanted into models of late stages of retinitis pigmentosa preferentially adopt a glial or a retinal ganglion cell fate. Invest Ophthalmol Vis Sci 2007, 48:446-454.
- [26]Dijk F, Bergen AA, Kamphuis W: GAP-43 expression is upregulated in retinal ganglion cells after ischemia/reperfusion-induced damage. Exp Eye Res 2007, 84:858-867.
- [27]Fuerst PG, Bruce F, Tian M, Wei W, Elstrott J, Feller MB, Erskine L, Singer JH, Burgess RW: DSCAM and DSCAML1 function in self-avoidance in multiple cell types in the developing mouse retina. Neuron 2009, 64:484-497.
- [28]Matsuoka RL, Nguyen-Ba-Charvet KT, Parray A, Badea TC, Chedotal A, Kolodkin AL: Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature 2011, 470:259-263.
- [29]Matsuoka RL, Jiang Z, Samuels IS, Nguyen-Ba-Charvet KT, Sun LO, Peachey NS, Chedotal A, Yau KW, Kolodkin AL: Guidance-cue control of horizontal cell morphology, lamination, and synapse formation in the mammalian outer retina. J Neurosci 2012, 32:6859-6868.
- [30]Usuda N, Kong Y, Hagiwara M, Uchida C, Terasawa M, Nagata T, Hidaka H: Differential localization of protein kinase C isozymes in retinal neurons. J Cell Biol 1991, 112:1241-1247.
- [31]Vardi N: Alpha subunit of Go localizes in the dendritic tips of ON bipolar cells. J Comp Neurol 1998, 395:43-52.
- [32]Austyn JM, Gordon S: F4/80, a monoclonal antibody directed specifically against the mouse macrophage. Eur J Immunol 1981, 11:805-815.
- [33]Riepe RE, Norenberg MD: Glutamine synthetase in the developing rat retina: an immunohistochemical study. Exp Eye Res 1978, 27:435-444.
- [34]May CA, Lutjen-Drecoll E: Morphology of the murine optic nerve. Invest Ophthalmol Vis Sci 2002, 43:2206-2212.
- [35]Phillips SE, Woodruff EA 3rd, Liang P, Patten M, Broadie K: Neuronal loss of Drosophila NPC1a causes cholesterol aggregation and age-progressive neurodegeneration. J Neurosci 2008, 28:6569-6582.
- [36]Wassle H: Parallel processing in the mammalian retina. Nat Rev Neurosci 2004, 5:747-757.
- [37]Saade CJ, Alvarez-Delfin K, Fadool JM: Rod photoreceptors protect from cone degeneration-induced retinal remodeling and restore visual responses in zebrafish. J Neurosci 2013, 33:1804-1814.
- [38]Peichl L, Gonzalez-Soriano J: Morphological types of horizontal cell in rodent retinae: a comparison of rat, mouse, gerbil, and guinea pig. Vis Neurosci 1994, 11:501-517.
- [39]Raven MA, Oh EC, Swaroop A, Reese BE: Afferent control of horizontal cell morphology revealed by genetic respecification of rods and cones. J Neurosci 2007, 27:3540-3547.
- [40]Ko JA, Mizuno Y, Shibasaki M, Yamane K, Chikama T, Sonoda KH, Kiuchi Y: Differential expression of semaphorin 3A and its receptors during mouse retinal development. Cell Biochem Funct 2012, 30:563-568.
- [41]Atkinson-Leadbeater K, Bertolesi GE, Hehr CL, Webber CA, Cechmanek PB, McFarlane S: Dynamic expression of axon guidance cues required for optic tract development is controlled by fibroblast growth factor signaling. J Neurosci 2010, 30:685-693.
- [42]Guirland C, Suzuki S, Kojima M, Lu B, Zheng JQ: Lipid rafts mediate chemotropic guidance of nerve growth cones. Neuron 2004, 42:51-62.
- [43]Kosicek M, Malnar M, Goate A, Hecimovic S: Cholesterol accumulation in Niemann pick type C (NPC) model cells causes a shift in APP localization to lipid rafts. Biochem Biophys Res Commun 2010, 393:404-409.
- [44]Vainio S, Bykov I, Hermansson M, Jokitalo E, Somerharju P, Ikonen E: Defective insulin receptor activation and altered lipid rafts in Niemann-pick type C disease hepatocytes. Biochem J 2005, 391:465-472.
- [45]Triviño A, Ramírez AI, Salazar JJ, de Hoz R, Rojas B, Padilla E, Tejerina T, Ramírez JM: A cholesterol-enriched diet induces ultrastructural changes in retinal and macroglial rabbit cells. Exp Eye Res 2006, 83:357-366.
- [46]Reichenbach A, Bringmann A: Müller Cells in the Healthy and Diseased Retina. Springer, New York; 2010.