Orphanet Journal of Rare Diseases | |
Visual evoked potentials of Niemann-Pick type C1 mice reveal an impairment of the visual pathway that is rescued by 2-hydroxypropyl-ß-cyclodextrin | |
Maria Teresa Fiorenza3  Franco Mangia3  Robert P. Erickson1  Fioretta Palombi2  Sonia Canterini3  Andrea Fortuna4  Stefano Loizzo4  Giampiero Palladino3  | |
[1] Department of Pediatrics, University of Arizona, Tucson 85724-5073, AZ, USA;Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Unit of Histology and Medical Embryology, Sapienza University of Rome, Rome, 00161, Italy;Department of Psychology, Section of Neuroscience and “Daniel Bovet” Neurobiology Research Center, Sapienza University of Rome, Rome, 00185, Italy;Department of Therapeutic Research and Medicines Evaluation, Istituto Superiore di Sanità, via Regina Elena 299, Rome, 00161, Italy | |
关键词: Dysmyelination; Neurodegeneration; Cholesterol; HPßCD; Npc1; Rare disease; Lysosomal diseases; | |
Others : 1228800 DOI : 10.1186/s13023-015-0348-0 |
|
received in 2015-05-12, accepted in 2015-09-27, 发布年份 2015 | |
【 摘 要 】
Background
The lysosomal storage disorder, Niemann Pick type C1 (NPC1), presents a variable phenotype including neurovisceral and neurological symptoms. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD)-based therapies are presently the most promising route of intervention. While severe cerebellar dysfunction remains the main disabling feature of NPC1, sensory functions including auditory and olfactory ones are also affected. Morphological and functional anomalies of Npc1 −/− mouse retina have also been observed, although the functional integrity of the visual pathway from retina to visual cortex is still unsettled. We have addressed this issue by characterizing the visual evoked potential (VEP) response of Npc1 −/− mice and determining if/how HPßCD administration influences the VEPs of both Npc1 −/− and Npc1 +/+ mice.
Methods
VEP elicited by a brief visual stimulus were recorded from the scalp overlying the visual cortex of adult (PN, postnatal days 60, 75, 85 and 100) Npc1 +/+ and Npc1 −/− mice that had received repeated injections of either HPßCD or plain vehicle. The first injection was given at PN4 and was followed by a second one at PN7 and thereafter by weekly injections up to PN49. Cholesterol accumulation and myelin loss were finally assessed by filipin staining and myelin basic protein immunohistochemistry, respectively.
Results and discussion
We have found that the transmission of visual signals from retina to visual cortex is negatively influenced by the loss of Npc1 function. In fact, the VEP response of Npc1 −/− mice displayed a highly significant increase in the latency compared to that of Npc1 +/+ mice. HPßCD administration fully rescued this defect and counteracted the cholesterol accumulation in retinal ganglion cells and dorsal lateral geniculate nucleus neurons, as well as the myelin loss in optic nerve fibers and axons projecting to the visual cortex observed in of Npc1 −/− mice. By contrast, HPßCD administration had no effect on the VEP response of Npc1 +/+ mice, further strengthening the treatment efficacy.
Conclusions
This study pinpoints the analysis of VEP response as a potentially accurate and non-invasive approach to assess neural activity and visual information processing in NPC1 patients, as well as for monitoring the progression of the disease and assessing the efficacy of potential therapies.
【 授权许可】
2015 Palladino et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151019041926236.pdf | 2520KB | download | |
Fig. 6. | 152KB | Image | download |
Fig. 5. | 226KB | Image | download |
Fig. 4. | 37KB | Image | download |
Fig. 3. | 93KB | Image | download |
Fig. 2. | 39KB | Image | download |
Fig. 1. | 18KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
【 参考文献 】
- [1]Imrie J, Dasgupta S, Besley GT, Harris C, Heptinstall L, Knight S, Vanier MT, Fensom AH, Ward C, Jacklin E, Whitehouse C, Wraith JE. The natural history of Niemann-Pick disease type C in the UK. J Inherit Metab Dis. 2007; 30:51-9.
- [2]Vanier MT. Niemann–Pick disease type C. Orphanet J Rare Dis. 2010; 5:16. BioMed Central Full Text
- [3]Kwon HJ, Abi-Mosleh L, Wang ML, Deisenhofer J, Goldstein JL, Brown MS, Infante RE. Structure of N-terminal domain of NPC1 reveals distinct subdomains for binding and transfer of cholesterol. Cell. 2009; 137:1213-24.
- [4]Deffieu MS, Pfeffer SR. Niemann-Pick type C 1 function requires lumenal domain residues that mediate cholesterol-dependent NPC2 binding. Proc Natl Acad Sci U S A. 2011; 108:18932-6.
- [5]Chevallier J, Chamoun Z, Jiang G, Prestwich G, Sakai N, Matile S, Parton RG, Gruenberg J. Lysobisphosphatidic acid controls endosomal cholesterol levels. J Biol Chem. 2008; 283:27871-80.
- [6]Li H, Turley SD, Liu B, Repa JJ, Dietschy JM. GM2/GD2 and GM3 gangliosides have no effect on cellular cholesterol pools or turnover in normal or NPC1 mice. J Lipid Res. 2008; 49:1816-28.
- [7]Kobayashi T, Beuchat MH, Lindsay M, Frias S, Palmiter RD, Sakuraba H, Parton RG, Gruenberg J. Late endosomal membranes rich in lysobisphosphatidic acid regulate cholesterol transport. Nat Cell Biol. 1999; 1:113-8.
- [8]Sarna J, Miranda SR, Schuchman EH, Hawkes R. Patterned cerebellar Purkinje cell death in a transgenic mouse model of Niemann Pick type A/B disease. Eur J Neurosci. 2001; 13:1873-80.
- [9]Li H, Repa JJ, Valasek MA, Beltroy EP, Turley SD, German DC, Dietschy JM. Molecular, anatomical, and biochemical events associated with neurodegeneration in mice with Niemann-Pick type C disease. J Neuropathol Exp Neurol. 2005; 64:323-33.
- [10]Võikar V, Rauvala H, Ikonen E. Cognitive deficit and development of motor impairment in a mouse model of Niemann-Pick type C disease. Behav Brain Res. 2002; 132:1-10.
- [11]King KA, Gordon-Salant S, Yanjanin N, Zalewski C, Houser A, Porter FD, Brewer CC. Auditory phenotype of Niemann-Pick disease, type C1. Ear Hear. 2014; 35:110-7.
- [12]Loftus SK, Morris JA, Carstea ED, Gu JZ, Cummings C, Brown A, Ellison J, Ohno K, Rosenfeld MA, Tagle DA, Pentchev PG, Pavan WJ. Murine model of Niemann–Pick C disease: mutation in a cholesterol homeostasis gene. Science. 1997; 277:232-5.
- [13]Lopez ME, Klein AD, Dimbil UJ, Scott MP. Anatomically defined neuron- based rescue of neurodegenerative niemann-pick type C disorder. J Neurosci. 2011; 31:4367-78.
- [14]Pressey SN, Smith DA, Wong AM, Platt FM, Cooper JD. Early glial activation, synaptic changes and axonal pathology in the thalamocortical system of Niemann- Pick type C1 mice. Neurobiol Dis. 2012; 45:1086-100.
- [15]Ong WY, Kumar U, Switzer RC, Sidhu A, Suresh G, Hu CY, Patel SC. Neurodegeneration in Niemann-Pick type C disease mice. Exp Brain Res. 2001; 141:218-31.
- [16]Yanjanin NM, Vélez JI, Gropman A, King K, Bianconi SE, Conley SK, Brewer CC, Solomon B, Pavan WJ, Arcos-Burgos M, Patterson MC, Porter FD. Linear clinical progression, independent of age of onset, in Niemann-Pick disease, type C. Am J Med Genet B Neuropsychiatr Genet. 2010; 153B:132-40.
- [17]King KA, Gordon-Salant S, Pawlowski KS, Taylor AM, Griffith AJ, Houser A, Kurima K, Wassif CA, Wright CG, Porter FD, Repa JJ, Brewer CC. Hearing loss is an early consequence of Npc1 gene deletion in the mouse model of Niemann-Pick disease, type C. J Assoc Res Otolaryngol. 2014; 15:529-41.
- [18]Luan Z, Saito Y, Miyata H, Ohama E, Ninomiya H, Ohno K. Brainstem neuropathology in a mouse model of Niemann-Pick disease type C. J Neurol Sci. 2008; 268:108-16.
- [19]Yan X, Ma L, Hovakimyan M, Lukas J, Wree A, Frank M, Guthoff R, Rolfs A, Witt M, Luo J. Defects in the retina of Niemann-pick type C 1 mutant mice. BMC Neurosci. 2014; 15:126. BioMed Central Full Text
- [20]Claudepierre T, Paques M, Simonutti M, Buard I, Sahel J, Maue RA, Picaud S, Pfrieger FW. Lack of Niemann-Pick type C1 induces age-related degeneration in the mouse retina. Mol Cell Neurosci. 2010; 43:164-76.
- [21]Pollock VE, Schneider LS, Chui HC, Henderson V, Zemansky M, Sloane RB. Visual evoked-potentials in dementia: a meta-analysis and empirical study of Alzheimers-disease patients. Biol Psychiatry. 1989; 25:1003-13.
- [22]Kromer R, Serbecic N, Hausner L, Froelich L, Beutelspacher SC. Comparison of visual evoked potentials and retinal nerve fiber layer thickness in Alzheimer’s disease. Front Neurol. 2013; 4:203.
- [23]Chirapapaisan N, Laotaweerungsawat S, Chuenkongkaew W, Samsen P, Ruangvaravate N, Thuangtong A, Chanvarapha N. Diagnostic value of visual evoked potentials for clinical diagnosis of multiple sclerosis. Doc Ophthalmol. 2015; 130:25-30.
- [24]Aras S, Tanriover G, Aslan M, Yargicoglu P, Agar A. The role of nitric oxide on visual-evoked potentials in MPTP-induced Parkinsonism in mice. Neurochem Int. 2014; 72:48-57.
- [25]Camargo F, Erickson RP, Garver WS, Hossain GS, Carbone PN, Heidenreich RA, Blanchard J. Cyclodextrins in the treatment of a mouse model of Niemann-Pick C disease. Life Sci. 2001; 70:131-42.
- [26]Liu B, Li H, Repa JJ, Turley SD, Dietschy JM. Genetic variations and treatments that affect the lifespan of the NPC1 mouse. J Lipid Res. 2008; 49:663-9.
- [27]Liu B, Turley SD, Burns DK, Miller AM, Repa JJ, Dietschy JM. Reversal of defective lysosomal transport in NPC disease ameliorates liver dysfunction and neurodegeneration in the npc1−/− mouse. Proc Natl Acad Sci U S A. 2009; 106:2377-82.
- [28]Davidson CD, Ali NF, Micsenyi MC, Stephney G, Renault S, Dobrenis K, Ory DS, Vanier MT, Walkley SU. Chronic cyclodextrin treatment of murine Niemann-Pick C disease ameliorates neuronal cholesterol and glycosphingolipid storage and disease progression. PLoS One. 2009; 4:e6951.
- [29]Liu B, Ramirez CM, Miller AM, Repa JJ, Turley SD, Dietschy JM. Cyclodextrin overcomes the transport defect in nearly every organ of NPC1 mice leading to excretion of sequestered cholesterol as bile acid. J Lipid Res. 2010; 51:933-44.
- [30]Aqul A, Liu B, Ramirez CM, Pieper AA, Estill SJ, Burns DK, Liu B, Repa JJ, Turley SD, Dietschy JM. Unesterified cholesterol accumulation in late endosomes/lysosomes causes neurodegeneration and is prevented by driving cholesterol export from this compartment. J Neurosci. 2011; 31:9404-13.
- [31]Ramirez CM, Liu B, Taylor AM, Repa JJ, Burns DK, Weinberg AG, Turley SD, Dietschy JM. Weekly cyclodextrin administration normalizes cholesterol metabolism in nearly every organ of the Niemann-Pick type C1 mouse and markedly prolongs life. Pediatr Res. 2010; 68:309-15.
- [32]Ramirez CM, Liu B, Aqul A, Taylor AM, Repa JJ, Turley SD, Dietschy JM. Quantitative role of LAL, NPC2, and NPC1 in lysosomal cholesterol processing defined by genetic and pharmacological manipulations. J Lipid Res. 2011; 52:688-98.
- [33]Ward S, O’Donnell P, Fernanadez S, Vite CH. 2-cydroxypropyl-beta-dyclodextrin raises hearing threshold in normal cats and cats with Niemann-Pick C disease. Pediatr Res. 2010; 68:52-6.
- [34]Vite CH, Bagel JH, Swain GP, Prociuk M, Sicora TU, Stein VM, O’Donnel P, Ruane T, Ward S, Crooks A, Li S, Mauldin E, Stellar S, De Meulder M, Kao ML, Ory DS, Davidson C, Vanier MT, Walkley SU. Intracisternal cyclodextrin prevents cerebellar dysfunction and Purkinje cell death in feline Niemann-Pick type C1 disease. Sci Transl Med. 2015; 7:276ra26.
- [35]Ottinger EA, Kao ML, Carrillo-Carrasco N, Yanjanin N, Shankar RK, Janssen M, Brewster M, Scott I, Xu X, Cradock J, Terse P, Dehdashti SJ, Marugan J, Zheng W, Portilla L, Hubbs A, Pavan WJ, Heiss J, H Vite C, Walkley SU, Ory DS, Silber SA, Porter FD, Austin CP, McKew JC. Collaborative development of 2-hydroxypropyl-β-cyclodextrin for the treatment of Niemann-Pick type C1 disease. Curr Top Med Chem. 2014; 14:330-9.
- [36]Crumling MA, Liu L, Thomas PV, Benson J, kanicki A, Kabara L, Halsey K, Dolan D, Duncan RL. Hearing loss and hair cell death in mice given the cholesterol-chelating agent hydroxypropyl-beta-cyclodextrin. PLoS One. 2012; 7:e53280.
- [37]Lopez L, Brusa A, Fadda A, Loizzo S, Martinangeli A, Sannita WG, Loizzo A. Modulation of flash stimulation intensity and frequency: effects on visual evoked potentials and oscillatory potentials recorded in awake, freely moving mice. Behav Brain Res. 2002; 131:105-14.
- [38]Guarino I, Loizzo S, Lopez L, Fadda A, Loizzo A. A chronic implant to record electroretinogram, visual evoked potentials and oscillatory potentials in awake, freely moving rats for pharmacological studies. Neural Plast. 2004; 11:241-50.
- [39]Porciatti V, Pizzorusso T, Maffei L. The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res. 1999; 39:3071-81.
- [40]D’Arcangelo G, Grossi D, De Chiara G, de Stefano MC, Cortese G, Citro G, Rufini S, Tancredi V, Merlo D, Frank C. Glutamatergic neurotransmission in a mouse model of Niemann-Pick type C disease. Brain Res. 2011; 1396:11-9.
- [41]Nusca S, Canterini S, Palladino G, Bruno F, Mangia F, Erickson RP, Fiorenza MT. A marked paucity of granule cells in the developing cerebellum of the Npc1 −/− mouse is corrected by a single injection of hydroxypropyl-β-cyclodextrin. Neurobiol Dis. 2014; 70:117-26.
- [42]Hagan N, Ben-Zvi A. The molecular, cellular, and morphological components of blood–brain barrier development during embryogenesis. Semin Cell Dev Biol. 2015; 38:7-15.
- [43]Ness GC. Developmental regulation of the expression of genes encoding proteins involved in cholesterol homeostasis. Am J Med Genet. 1994; 50:355-7.
- [44]Glickfeld LL, Reid RC, Andermann ML. A mouse model of higher visual cortical function. Curr Opin Neurobiol. 2014; 24:28-33.
- [45]Hoffpauir BK, Marrs GS, Mathers PH, Spirou GA. Does the brain connect before the periphery can direct? A comparison of three sensory systems in mice. Brain Res. 2009; 1277:115-29.
- [46]Yu T, Lieberman AP. Npc1 acting in neurons and glia is essential for the formation and maintenance of CNS myelin. PLoS Genet. 2013; 9:e1003462.
- [47]Baudry M, Yao Y, Simmons D, Liu J, Bi X. Postnatal development of inflammation in a murine model of Niemann-Pick type C disease: immunohistochemical observations of microglia and astroglia. Exp Neurol. 2003; 184:887-903.
- [48]Borbon I, Totenhagen J, Fiorenza MT, Canterini S, Ke W, Trouard T, Erickson RP. Niemann-Pick C1 mice, a model of “juvenile Alzheimer’s disease”, with normal gene expression in neurons and fibrillary astrocytes show long term survival and delayed neurodegeneration. J Alzheimers Dis. 2012; 30:875-87.
- [49]Iodice R, Dubbioso R, Topa A, Ruggiero L, Pisciotta C, Esposito M, Tozza S, Santoro L, Manganelli F. Electrophysiological characterization of adult-onset Niemann-Pick type C disease. J Neurol Sci. 2015; 348:262-5.
- [50]Hovakimyan M, Meyer A, Lukas J, Luo J, Gudziol V, Hummel T, Rolfs A, Wree A, Witt M. Olfactory deficits in Niemann-Pick type C1 (NPC1) disease. PLoS One. 2013; 8:e82216.
- [51]Andrade GN, Molholm S, Butler JS, Brandwein AB, Walkley SU, Foxe JJ. Atypical multisensory integration in Niemann-Pick type C disease - towards potential biomarkers. Orphanet J Rare Dis. 2014; 9:149. BioMed Central Full Text
- [52]You Y, Klistorner A, Thie J, Graham SL. Latency delay of visual evoked potential is a real measurement of demyelination in a rat model of optic neuritis. Invest Ophthalmol Vis Sci. 2011; 52:6911-8.
- [53]Vetulani J. Early maternal separation: a rodent model of depression and a prevailing human condition. Pharmacol Rep. 2013; 65:1451-61.
- [54]McEwen BS, Gianaros PJ. Stress- and allostasis-induced brain plasticity. Annu Rev Med. 2011; 62:431-45.
- [55]Barry RJ, De Blasio FM, De Pascalis V, Karamacoska D. Preferred EEG brain states at stimulus onset in a fixed interstimulus interval equiprobable auditory Go/NoGo task: a definitive study. Int J Psychophysiol. 2014; 94(1):42-58.
- [56]Loizzo A, Spampinato SM, Campana G, Vella S, Fortuna A, Costa L, Capasso A, Monteleone P, Renzi P, Loizzo S. Enhanced brain performance in mice following postnatal stress. J Endocrinol. 2012; 215:413-24.
- [57]Başar E, Rahn E, Demiralp T, Schürmann M. Spontaneous EEG theta activity controls frontal visual evoked potential amplitudes. Electroencephalogr Clin Neurophysiol. 1998; 108:101-9.
- [58]Meeren HK, Van Luijtelaar EL, Coenen AM. Cortical and thalamic visual evoked potentials during sleep-wake states and spike-wave discharges in the rat. Electroencephalogr Clin Neurophysiol. 1998; 108:306-19.