期刊论文详细信息
BMC Cancer
Increased MiR-221 expression in hepatocellular carcinoma tissues and its role in enhancing cell growth and inhibiting apoptosis in vitro
Minhua Rong2  Gang Chen1  Yiwu Dang1 
[1] Department of Pathology, First Affiliated Hospital, Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P.R. China
[2] Research Department, Affiliated Cancer Hospital, Guangxi Medical University, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, P.R. China
关键词: Caspase;    Apoptosis;    Cell cycle;    Cell growth;    Hepatocellular carcinoma (HCC);    MiR-221;   
Others  :  1134860
DOI  :  10.1186/1471-2407-13-21
 received in 2012-07-11, accepted in 2013-01-11,  发布年份 2013
PDF
【 摘 要 】

Background

MiR-221 is over-expressed in human hepatocellular carcinoma (HCC), but its clinical significance and function in HCC remains uncertain. The aim of the study was to investigate the relationship between miR-221 overexpression and clinicopathological parameters in HCC formalin-fixed paraffin-embedded (FFPE) tissues, and the effect of miR-221 inhibitor and mimic on different HCC cell lines in vitro.

Methods

MiR-221 expression was detected using real time RT-qPCR in FFPE HCC and the adjacent noncancerous liver tissues. The relationship between miR-221 level and clinicopathological features was also analyzed. Furthermore, miR-221 inhibitor and mimic were transfected into HCC cell lines HepB3, HepG2 and SNU449. The effects of miR-221 on cell growth, cell cycle, caspase activity and apoptosis were also investigated by spectrophotometry, fluorimetry, fluorescence microscopy and flow cytometry, respectively.

Results

The relative expression of miR-221 in clinical TNM stages III and IV was significantly higher than that in the stages I and II. The miR-221 level was also upregulated in the metastatic group compared to the nonmetastatic group. Furthermore, miR-221 over-expression was related to the status of tumor capsular infiltration in HCC clinical samples. Functionally, cell growth was inhibited, cell cycle was arrested in G1/S-phase and apoptosis was increased by miR-221 inhibitor in vitro. Likewise, miR-221 mimic accelerated the cell growth.

Conclusions

Expression of miR-221 in FFPE tissues could provide predictive significance for prognosis of HCC patients. Moreover, miR-221 inhibitor could be useful to suppress proliferation and induce apoptosis in HCC cells. Thus miR-221 might be a critical targeted therapy strategy for HCC.

【 授权许可】

   
2013 Rong et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306092228417.pdf 1479KB PDF download
Figure 12. 123KB Image download
Figure 11. 167KB Image download
Figure 10. 172KB Image download
Figure 9. 51KB Image download
Figure 8. 187KB Image download
Figure 7. 123KB Image download
Figure 6. 185KB Image download
Figure 5. 185KB Image download
Figure 4. 62KB Image download
Figure 3. 57KB Image download
Figure 2. 41KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

【 参考文献 】
  • [1]Kudo M: Hepatocellular carcinoma in 2011 and beyond: from the pathogenesis to molecular targeted therapy. Oncology 2011, 81(Suppl 1):1-10.
  • [2]Meguro M, Mizuguchi T, Kawamoto M, Hirata K: The molecular pathogenesis and clinical implications of hepatocellular carcinoma. Int J Hepatol 2011, 2011:818672.
  • [3]Yamazaki K, Masugi Y, Sakamoto M: Molecular pathogenesis of hepatocellular carcinoma: altering transforming growth factor-beta signaling in hepatocarcinogenesis. Dig Dis 2011, 29:284-288.
  • [4]Parkin DM, Bray F, Ferlay J, Pisani P: Estimating the world cancer burden: Globocan 2000. Int J Cancer 2001, 94:153-156.
  • [5]Zemel R, Issachar A, Tur-Kaspa R: The role of oncogenic viruses in the pathogenesis of hepatocellular carcinoma. Clin Liver Dis 2011, 15:261-279. vii-x
  • [6]Vertemati M, Moscheni C, Petrella D, Lamperti L, Cossa M, Gambacorta M, Goffredi M, Vizzotto L: Morphometric analysis of hepatocellular nodular lesions in HCV cirrhosis. Pathol Res Pract 2012, 208:240-244.
  • [7]Hu Z, Zhao W: Novel insights into the molecular mechanisms of alpha-fetoprotein expression and malignant phenotypes of hepatocellular carcinoma. Cell Mol Immunol 2012, 9:7-8.
  • [8]Merle P, Trepo C: Molecular mechanisms underlying hepatocellular carcinoma. Viruses 2009, 1:852-872.
  • [9]Aravalli RN, Steer CJ, Cressman EN: Molecular mechanisms of hepatocellular carcinoma. Hepatology 2008, 48:2047-2063.
  • [10]Katzenellenbogen M, Mizrahi L, Pappo O, Klopstock N, Olam D, Barash H, Domany E, Galun E, Goldenberg D: Molecular mechanisms of the chemopreventive effect on hepatocellular carcinoma development in Mdr2 knockout mice. Mol Cancer Ther 2007, 6:1283-1291.
  • [11]Zinkin NT, Grall F, Bhaskar K, Otu HH, Spentzos D, Kalmowitz B, Wells M, Guerrero M, Asara JM, Libermann TA, Afdhal NH: Serum proteomics and biomarkers in hepatocellular carcinoma and chronic liver disease. Clin Cancer Res 2008, 14:470-477.
  • [12]Hu L, Chen G, Yu H, Qiu X: Clinicopathological significance of RASSF1A reduced expression and hypermethylation in hepatocellular carcinoma. Hepatol Int 2010, 4:423-432.
  • [13]Chen G, Luo D: Expression of decoy receptor 3 in liver tissue microarrays. Natl Med J India 2008, 21:275-278.
  • [14]Chen G, Dang YW, Luo DZ, Feng ZB, Tang XL: Expression of heparanase in hepatocellular carcinoma has prognostic significance: a tissue microarray study. Oncol Res 2008, 17:183-189.
  • [15]Giorgio A: Percutaneous radiofrequency ablation of hepatocellular carcinoma on cirrhosis: state of the art and future perspectives. Recent Pat Anticancer Drug Discov 2010, 5:69-76.
  • [16]Lencioni R, Cioni D, Crocetti L, Bartolozzi C: Percutaneous ablation of hepatocellular carcinoma: state-of-the-art. Liver Transpl 2004, 10:S91-97.
  • [17]Raoul JL, Sangro B, Forner A, Mazzaferro V, Piscaglia F, Bolondi L, Lencioni R: Evolving strategies for the management of intermediate-stage hepatocellular carcinoma: available evidence and expert opinion on the use of transarterial chemoembolization. Cancer Treat Rev 2011, 37:212-220.
  • [18]Philip PA, Mahoney MR, Allmer C, Thomas J, Pitot HC, Kim G, Donehower RC, Fitch T, Picus J, Erlichman C: Phase II study of Erlotinib (OSI-774) in patients with advanced hepatocellular cancer. J Clin Oncol 2005, 23:6657-6663.
  • [19]Thomas MB, Morris JS, Chadha R, Iwasaki M, Kaur H, Lin E, Kaseb A, Glover K, Davila M, Abbruzzese J: Phase II trial of the combination of bevacizumab and erlotinib in patients who have advanced hepatocellular carcinoma. J Clin Oncol 2009, 27:843-850.
  • [20]Zhu AX, Blaszkowsky LS, Ryan DP, Clark JW, Muzikansky A, Horgan K, Sheehan S, Hale KE, Enzinger PC, Bhargava P, Stuart K: Phase II study of gemcitabine and oxaliplatin in combination with bevacizumab in patients with advanced hepatocellular carcinoma. J Clin Oncol 2006, 24:1898-1903.
  • [21]Faivre S, Raymond E, Boucher E, Douillard J, Lim HY, Kim JS, Zappa M, Lanzalone S, Lin X, Deprimo S, et al.: Safety and efficacy of sunitinib in patients with advanced hepatocellular carcinoma: an open-label, multicentre, phase II study. Lancet Oncol 2009, 10:794-800.
  • [22]Palmer DH: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008, 359:2498. author reply 2498–2499
  • [23]Copur MS: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008, 359:2498. author reply 2498–2499
  • [24]Spinzi G, Paggi S: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008, 359:2497-2498. author reply 2498–2499
  • [25]Llovet JM, Ricci S, Mazzaferro V, Hilgard P, Gane E, Blanc JF, de Oliveira AC, Santoro A, Raoul JL, Forner A, et al.: Sorafenib in advanced hepatocellular carcinoma. N Engl J Med 2008, 359:378-390.
  • [26]Winter J, Diederichs S: MicroRNA biogenesis and cancer. Methods Mol Biol 2011, 676:3-22.
  • [27]Gibb EA, Brown CJ, Lam WL: The functional role of long non-coding RNA in human carcinomas. Mol Cancer 2011, 10:38. BioMed Central Full Text
  • [28]Hummel R, Hussey DJ, Haier J: MicroRNAs: predictors and modifiers of chemo- and radiotherapy in different tumour types. Eur J Cancer 2010, 46:298-311.
  • [29]Augello C, Vaira V, Caruso L, Destro A, Maggioni M, Park YN, Montorsi M, Santambrogio R, Roncalli M, Bosari S: MicroRNA profiling of hepatocarcinogenesis identifies C19MC cluster as a novel prognostic biomarker in hepatocellular carcinoma. Liver Int 2012, 32:772-782.
  • [30]Negrini M, Gramantieri L, Sabbioni S, Croce CM: microRNA involvement in hepatocellular carcinoma. Anticancer Agents Med Chem 2011, 11:500-521.
  • [31]Sato F, Hatano E, Kitamura K, Myomoto A, Fujiwara T, Takizawa S, Tsuchiya S, Tsujimoto G, Uemoto S, Shimizu K: MicroRNA profile predicts recurrence after resection in patients with hepatocellular carcinoma within the Milan Criteria. PLoS One 2011, 6:e16435.
  • [32]Diao S, Zhang JF, Wang H, He ML, Lin MC, Chen Y, Kung HF: Proteomic identification of microRNA-122a target proteins in hepatocellular carcinoma. Proteomics 2010, 10:3723-3731.
  • [33]Burchard J, Zhang C, Liu AM, Poon RT, Lee NP, Wong KF, Sham PC, Lam BY, Ferguson MD, Tokiwa G, et al.: microRNA-122 as a regulator of mitochondrial metabolic gene network in hepatocellular carcinoma. Mol Syst Biol 2010, 6:402.
  • [34]Huang XH, Wang Q, Chen JS, Fu XH, Chen XL, Chen LZ, Li W, Bi J, Zhang LJ, Fu Q, et al.: Bead-based microarray analysis of microRNA expression in hepatocellular carcinoma: miR-338 is downregulated. Hepatol Res 2009, 39:786-794.
  • [35]Ura S, Honda M, Yamashita T, Ueda T, Takatori H, Nishino R, Sunakozaka H, Sakai Y, Horimoto K, Kaneko S: Differential microRNA expression between hepatitis B and hepatitis C leading disease progression to hepatocellular carcinoma. Hepatology 2009, 49:1098-1112.
  • [36]Li S, Fu H, Wang Y, Tie Y, Xing R, Zhu J, Sun Z, Wei L, Zheng X: MicroRNA-101 regulates expression of the v-fos FBJ murine osteosarcoma viral oncogene homolog (FOS) oncogene in human hepatocellular carcinoma. Hepatology 2009, 49:1194-1202.
  • [37]Gramantieri L, Fornari F, Callegari E, Sabbioni S, Lanza G, Croce CM, Bolondi L, Negrini M: MicroRNA involvement in hepatocellular carcinoma. J Cell Mol Med 2008, 12:2189-2204.
  • [38]Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y, Tantoso E, Li KB, Ooi LL, Tan P, Lee CG: Profiling microRNA expression in hepatocellular carcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224-specific target. J Biol Chem 2008, 283:13205-13215.
  • [39]Varnholt H, Drebber U, Schulze F, Wedemeyer I, Schirmacher P, Dienes HP, Odenthal M: MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 2008, 47:1223-1232.
  • [40]Gramantieri L, Ferracin M, Fornari F, Veronese A, Sabbioni S, Liu CG, Calin GA, Giovannini C, Ferrazzi E, Grazi GL, et al.: Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Res 2007, 67:6092-6099.
  • [41]Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K: Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene 2006, 25:2537-2545.
  • [42]Karakatsanis A, Papaconstantinou I, Gazouli M, Lyberopoulou A, Polymeneas G, Voros D: Expression of microRNAs, miR-21, miR-31, miR-122, miR-145, miR-146a, miR-200c, miR-221, miR-222, and miR-223 in patients with hepatocellular carcinoma or intrahepatic cholangiocarcinoma and its prognostic significance. Mol Carcinog 2011.
  • [43]Fu X, Wang Q, Chen J, Huang X, Chen X, Cao L, Tan H, Li W, Zhang L, Bi J, et al.: Clinical significance of miR-221 and its inverse correlation with p27Kip(1) in hepatocellular carcinoma. Mol Biol Rep 2011, 38:3029-3035.
  • [44]Pineau P, Volinia S, McJunkin K, Marchio A, Battiston C, Terris B, Mazzaferro V, Lowe SW, Croce CM, Dejean A: miR-221 overexpression contributes to liver tumorigenesis. Proc Natl Acad Sci U S A 2010, 107:264-269.
  • [45]Gramantieri L, Fornari F, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Croce CM, Bolondi L, Negrini M: MicroRNA-221 targets Bmf in hepatocellular carcinoma and correlates with tumor multifocality. Clin Cancer Res 2009, 15:5073-5081.
  • [46]Wong QW, Lung RW, Law PT, Lai PB, Chan KY, To KF, Wong N: MicroRNA-223 is commonly repressed in hepatocellular carcinoma and potentiates expression of Stathmin1. Gastroenterology 2008, 135:257-269.
  • [47]Fornari F, Gramantieri L, Ferracin M, Veronese A, Sabbioni S, Calin GA, Grazi GL, Giovannini C, Croce CM, Bolondi L, Negrini M: MiR-221 controls CDKN1C/p57 and CDKN1B/p27 expression in human hepatocellular carcinoma. Oncogene 2008, 27:5651-5661.
  • [48]Garofalo M, Di Leva G, Romano G, Nuovo G, Suh SS, Ngankeu A, Taccioli C, Pichiorri F, Alder H, Secchiero P, et al.: miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 2009, 16:498-509.
  • [49]Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, Guo J, Zhang Y, Chen J, Guo X, et al.: Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 2008, 18:997-1006.
  • [50]Brase JC, Wuttig D, Kuner R, Sultmann H: Serum microRNAs as non-invasive biomarkers for cancer. Mol Cancer 2010, 9:306. BioMed Central Full Text
  • [51]Li J, Wang Y, Yu W, Chen J, Luo J: Expression of serum miR-221 in human hepatocellular carcinoma and its prognostic significance. Biochem Biophys Res Commun 2011, 406:70-73.
  • [52]Yuan Q, Loya K, Rani B, Mobus S, Balakrishnan A, Lamle J, Cathomen T, Vogel A, Manns MP, Ott M, et al.: MicroRNA-221 overexpression accelerates hepatocyte proliferation during liver regeneration. Hepatology 2013, 57:299-310.
  • [53]Dai R, Li J, Liu Y, Yan D, Chen S, Duan C, Liu X, He T, Li H: miR-221/222 suppression protects against endoplasmic reticulum stress-induced apoptosis via p27(Kip1)- and MEK/ERK-mediated cell cycle regulation. Biol Chem 2010, 391:791-801.
  • [54]Sharma AD, Narain N, Handel EM, Iken M, Singhal N, Cathomen T, Manns MP, Scholer HR, Ott M, Cantz T: MicroRNA-221 regulates FAS-induced fulminant liver failure. Hepatology 2011, 53:1651-1661.
  • [55]Lu Q, Lu C, Zhou GP, Zhang W, Xiao H, Wang XR: MicroRNA-221 silencing predisposed human bladder cancer cells to undergo apoptosis induced by TRAIL. Urol Oncol 2010, 28:635-641.
  • [56]Park JK, Kogure T, Nuovo GJ, Jiang J, He L, Kim JH, Phelps MA, Papenfuss TL, Croce CM, Patel T, Schmittgen TD: miR-221 silencing blocks hepatocellular carcinoma and promotes survival. Cancer Res 2011, 71:7608-7616.
  • [57]Sobin LH, Compton CC: TNM seventh edition: what's new, what's changed: communication from the International Union Against Cancer and the American Joint Committee on Cancer. Cancer 2010, 116:5336-5339.
  • [58]Llovet JM, Di Bisceglie AM, Bruix J, Kramer BS, Lencioni R, Zhu AX, Sherman M, Schwartz M, Lotze M, Talwalkar J, Gores GJ: Design and endpoints of clinical trials in hepatocellular carcinoma. J Natl Cancer Inst 2008, 100:698-711.
  • [59]Chen G, Kronenberger P, Umelo IA, Teugels E, De Grève J: Quantification of epidermal growth factor receptor T790M mutant transcripts in lung cancer cells by real-time reverse transcriptase-quantitative polymerase chain reaction. Anal Biochem 2010, 398:266-268.
  • [60]Chen G, Kronenberger P, Teugels E, De Grève J: Influence of RT-qPCR primer position on EGFR interference efficacy in lung cancer cells. Biol Proced Online 2011, 13:1. BioMed Central Full Text
  • [61]Chen G, Kronenberger P, Teugels E, Adaku Umelo I, De Greve J: Targeting the epidermal growth factor receptor in non-small cell lung cancer cells: the effect of combining RNA interference with tyrosine kinase inhibitors or cetuximab. BMC Med 2012, 10:28. BioMed Central Full Text
  • [62]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25:402-408.
  文献评价指标  
  下载次数:130次 浏览次数:27次