期刊论文详细信息
BMC Medical Genomics
Heterogeneity analysis of the proteomes in clinically nonfunctional pituitary adenomas
Dominic M Desiderio2  Ying Long1  Xiaowei Wang1  Xianquan Zhan3 
[1] State Local Joint Engineering Laboratory for Anticancer Drugs, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, Hunan, P. R. China;The Charles B. Stout Neuroscience Mass Spectrometry Laboratory, Department of Neurology, College of Medicine, University of Tennessee Health Science Center, 847 Monroe Avenue, Memphis 38163, TN, USA;The State Key Laboratory of Medical Genetics, Central South University, 88 Xiangya Road, Changsha 410008, Hunan, P. R. China
关键词: Pathway network;    Differentially expressed protein;    Mass spectrometry;    Two-dimensional gel electrophoresis;    Heterogeneity;    Proteome;    Nonfunctional pituitary adenoma;   
Others  :  1090084
DOI  :  10.1186/s12920-014-0069-6
 received in 2014-10-03, accepted in 2014-12-11,  发布年份 2014
PDF
【 摘 要 】

Background

Clinically nonfunctional pituitary adenomas (NFPAs) without any clinical elevation of hormone and with a difficulty in its early-stage diagnosis are highly heterogeneous with different hormone expressions in NFPA tissues, including luteinizing hormone (LH)-positive, follicle-stimulating hormone (FSH)-positive, LH/FSH-positive, and negative (NF). Elucidation of molecular mechanisms and discovery of biomarkers common and specific to those different subtypes of NFPAs will benefit NFPA patients in early-stage diagnosis and individualized treatment.

Methods

Two-dimensional gel electrophoresis (2DGE) and PDQuest image analyses were used to compare proteomes of different NFPA subtypes (NF-, LH-, FSH-, and LH/FSH-positive) relative to control pituitaries (Con). Differentially expressed proteins (DEPs) were characterized with mass spectrometry (MS). Each set of DEPs in four NFPA subtypes was evaluated with overlap analysis and signaling pathway network analysis with comparison to determine any DEP and pathway network that are common and specific to each NFPA subtype.

Results

A total of 93 differential protein-spots were determined with comparison of each NFPA type (NF-, LH-, FSH-, and LH/FSH-positive) versus control pituitaries. A total of 76 protein-spots were MS-identified (59 DEPs in NF vs. Con; 65 DEPs in LH vs. Con; 63 DEPs in FSH vs. Con; and 55 DEPs in LH/FSH vs. Con). A set of DEPs and pathway network data were common and specific to each NFPA subtype. Four important common pathway systems included MAPK-signaling abnormality, oxidative stress, mitochondrial dysfunction, and cell-cycle dysregulation. However, these pathway systems were, in fact, different among four NFPA subtypes with different protein-expression levels of most of nodes, different protein profiles, and different pathway network profiles.

Conclusions

These result data demonstrate that common and specific DEPs and pathway networks exist in four NFPA subtypes, and clarify proteome heterogeneity of four NFPA subtypes. Those findings will help to elucidate molecular mechanisms of NFPAs, and discover protein biomarkers to effectively manage NFPA patients towards personalized medicine.

【 授权许可】

   
2014 Zhan et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150128154007179.pdf 3504KB PDF download
Figure 5. 74KB Image download
Figure 4. 96KB Image download
Figure 3. 117KB Image download
Figure 2. 92KB Image download
Figure 2. 17KB Image download
【 图 表 】

Figure 2.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Melmed S: Pathogenesis of pituitary tumors. Nat Rev Endocrinol 2011, 7(5):257-266.
  • [2]Farrell WE: Pituitary tumours: findings from whole genome analyses. Endocr Relat Cancer 2006, 13(3):707-716.
  • [3]Zhan X, Desiderio DM: Comparative proteomics analysis of human pituitary adenomas: Current status and future perspectives. Mass Spectrom Rev 2005, 24(6):783-813.
  • [4]Zhan X, Wang X, Desiderio DM: Pituitary adenoma nitroproteomics: current status and perspectives. Oxid Med Cell Longev 2013, 2013:580710.
  • [5]Zhan X, Wang X, Desiderio DM: Mass spectrometry analysis of nitrotyrosine-containing proteins. Mass Spectrom Rev 2013.
  • [6]Zhou KY, Jin HH, Bai ZQ, Liu CB: Pituitary adenoma biomarkers identified using proteomic fingerprint technology. Asian Pac J Cancer Prev 2012, 13(8):4093-4095.
  • [7]Hu X, Zhang P, Shang A, Li Q, Xia Y, Jia G, Liu W, Xiao X, He D: A primary proteomic analysis of serum from patients with nonfunctioning pituitary adenoma. J Int Med Res 2012, 40(1):95-104.
  • [8]Cruz-Topete D, Christensen B, Sackmann-Sala L, Okada S, Jorgensen JO, Kopchick JJ: Serum proteome changes in acromegalic patients following transsphenoidal surgery: novel biomarkers of disease activity. Eur J Endocrinol 2011, 164(2):157-167.
  • [9]Strathmann FG, Borlee G, Born DE, Gonzalez-Cuyar LF, Huber BR, Baird GS: Multiplex immunoassays of peptide hormones extracted from formalin-fixed, paraffin-embedded tissue accurately subclassify pituitary adenomas. Clin Chem 2012, 58(2):366-374.
  • [10]Galland F, Chanson P: Classification and pathophysiology of pituitary adenomas. Bull Acad Natl Med 2009, 193(7):1543-1556.
  • [11]Zhan X, Desiderio DM: A reference map of a pituitary adenoma proteome. Proteomics 2003, 3(5):699-713.
  • [12]Zhao Y, Giorgianni F, Desiderio DM, Fang B, Beranova-Giorgianni S: Toward a global analysis of the human pituitary proteome by multiple gel-based technology. Anal Chem 2005, 77(16):5324-5331.
  • [13]Giorgianni F, Desiderio DM, Beranova-Giorgianni S: Proteome analysis using isoelectric focusing in immobilized pH gradient gels followed by mass spectrometry. Electrophoresis 2003, 24(1–2):253-259.
  • [14]Beranova-Giorgianni S, Giorgianni F, Desiderio DM: Analysis of the proteome in the human pituitary. Proteomics 2002, 2(5):534-542.
  • [15]Moreno CS, Evans CO, Zhan X, Okor M, Desiderio DM, Oyesiku NM: Novel molecular signaling in human clinically non-functional pituitary adenomas identified by gene expression profiling and proteomic analyses. Cancer Res 2005, 65(22):10214-10222.
  • [16]Zhan X, Desiderio DM, Wang X, Zhan X, Guo T, Li M, Peng F, Chen X, Yang H, Zhang P, Li X, Chen Z: Identification of the proteomic variations of invasive relative to noninvasive nonfunctional pituitary adenomas. Electrophoresis 2014, 35(15):2184-2194.
  • [17]Zhan X, Desiderio DM: The human pituitary nitroproteome: detection of nitrotyrosyl-proteins with two-dimensional Western blotting, and amino acid sequence determination with mass spectrometry. Biochem Biophys Res Commun 2004, 325(4):1180-1186.
  • [18]Zhan X, Desiderio DM: Nitroproteins from a human pituitary adenoma tissue discovered with a nitrotyrosine affinity column and tandem mass spectrometry. Anal Biochem 2006, 354(2):279-289.
  • [19]Zhan X, Desiderio DM: Linear ion-trap mass spectrometric characterization of human pituitary nitrotyrosine-containing proteins. Int J Mass Spectrom 2007, 259(1):96-104.
  • [20]Giorgianni F, Beranova-Giorgianni S, Desiderio DM: Identification and characterization of phosphorylated proteins in the human pituitary. Poteomics 2004, 4(3):587-598.
  • [21]Beranova-Giorgianni S, Zhao Y, Desiderio DM, Giorgianni F: Phosphoproteomic analysis of the human pituitary. Pituitary 2006, 9(2):109-120.
  • [22]Zhan X, Giorgianni F, Desiderio DM: Proteomics analysis of growth hormone isoforms in the human pituitary. Proteomics 2005, 5(5):1228-1241.
  • [23]Zhan X, Desiderio DM: Signal pathway networks mined from human pituitary adenoma proteomics data. BMC Med Genomics 2010, 3:13. BioMed Central Full Text
  • [24]Ribeiro-Oliveira A Jr, Franchi G, Kola B, Dalino P, Pinheiro SV, Salahuddin N, Musat M, Góth MI, Czirják S, Hanzély Z, da Silva DA, Paulino E Jr, Grossman AB, Korbonits M: Protein western array analysis in human pituitary tumours: insights and limitations. Endocr Relat Cancer 2008, 15(4):1099-1114.
  • [25]Liu Y, Zhuang D, Hou R, Li J, Xu G, Song T, Chen L, Yan G, Pang Q, Zhu J: Shotgun proteomic analysis of microdissected postmortem human pituitary using complementary two-dimensional liquid chromatography coupled with tandem mass spectrometer. Anal Chim Acta 2011, 688(2):183-190.
  • [26]Liu Y, Wu J, Yan G, Hou R, Zhuang D, Chen L, Pang Q, Zhu J: Proteomic analysis of prolactinoma cells by immuno-laser capture microdissection combined with online two-dimensional nano-scale liquid chromatography/mass spectrometry. Proc Natl Acad Sci U S A 2010, 8:2.
  • [27]Liu Y, Wu J, Liu S, Zhuang D, Wang Y, Shou X, Zhu J: Immuno-laser capture microdissection of frozen prolactioma sections to prepare proteomic samples. Colloids Surf B Biointerfaces 2009, 71(2):187-193.
  • [28]Walsh MT, Couldwell WT: Symptomatic cystic degeneration of a clinically silent corticotroph tumor of the pituitary gland. Skull Base 2010, 20(5):367-370.
  • [29]Zhou W, Song Y, Xu H, Zhou K, Zhang W, Chen J, Qin M, Yi H, Gustafsson JA, Yang H, Fan X: In nonfunctional pituitary adenomas, estrogen receptors and slug contribute to development of invasiveness. J Clin Endocrinol Metab 2011, 96(8):E1237-E1245.
  • [30]Magdeldin S, Enany S, Yoshida Y, Xu B, Zhang Y, Zureena Z, Lokamani I, Yaoita E, Yamamoto T: Basics and recent advances of two dimensional-polyacrylamide gel electrophoresis. Clin Proteomics 2014, 11(1):16. BioMed Central Full Text
  • [31]Webster J, Oxley D: Protein identification by MALDI-TOF mass spectrometry. Methods Mol Biol 2012, 800:227-240.
  • [32]Zhan X, Desiderio DM: Differences in the spatial and quantitative reproducibility between two second-dimensional gel electrophoresis systems. Electrophoresis 2003, 24(11):1834-1846.
  • [33]Zhan X, Desiderio DM: Spot volume vs. amount of protein loaded onto a gel: a detailed, statistical comparison of two gel electrophoresis systems. Electrophoresis 2003, 24(11):1818-1833.
  • [34]Zhan X, Desiderio DM: Heterogeneity analysis of the human pituitary proteome. Clin Chem 2003, 49(10):1740-1751.
  • [35]Zhan X, Evans CO, Oyesiku NM, Desiderio DM: Proteomics and transcriptomics analyses of secretagogin down-regulation in human non-functional pituitary adenomas. Pituitary 2003, 6(4):189-202.
  • [36]English JM, Cobb MH: Pharmcological inhibitors of MAPK pathways. Trends Pharmacol Sci 2002, 23(1):40-45.
  • [37]Johnson GL, Lpadat R: Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science 2002, 298(5600):1911-1912.
  • [38]Wada T, Penninger JM: Mitogen-activated protein kinases in apoptosis regulation. Oncogene 2004, 23(16):2838-2849.
  • [39]Ceccatelli S, Hulting AL, Zhang X, Gustafsson L, Villar M, Hokfelt T: Nitric oxide synthase in the rat anterior pituitary gland and the role of nitric oxide in regulation of LH secretion. Proc Natl Acad Sci U S A 1993, 90(23):11292-11296.
  • [40]Ueta Y, Levy A, Powell MP, Lightaman SL, Kinoshita Y, Yokota A, Shibuya I, Yamashita H: Neuronal nitric oxide synthase gene expression in human pituitary tumours: a possible association with somatotroph adenomas and growth hormone-releasing hormone gene expression. Clin Endocrinol (Oxf) 1998, 49(1):29-38.
  • [41]Lloyd RV, Jin L, Qian X, Zhang S, Scheithauer BW: Nitric oxide synthase in the human pituitary gland. Am J Pathol 1995, 146(1):86-94.
  • [42]Pawlikowshi M, Winczyk K, Jaranowska M: Immunohistochemical demonstration of nitric oxide synthase (NOS) in the normal rat pituitary gland, estrogen-induced rat pituitary tumor and human pituitary adenomas. Folia Histochem Cytobiol 2003, 41(2):87-90.
  • [43]Kruse A, Broholm H, Rubin I, Schmidt K, Lauritzen M: Nitric oxide synthase activity in human pituitary adenomas. Acta Neurol Scand 2002, 106(6):361-366.
  • [44]Vankelecom H, Matthys P, Denef C: Inducible nitric oxide synthase in the anterior pituitary gland: induction by interferon-r in a subpopulation of folliculostellate cells and in an unidentifiable population of nonhormone-secreting cells. J Histochem Cytochem 1997, 45(6):847-857.
  • [45]Riedel W: Role of nitric oxide in the control of the hypothalamicpituitary- adrenocortical axis. Z Rheumatol 2002, 59:36-42.
  • [46]McCann SM, Haens G, Mastronardi C, Walczewska A, Karanth S, Rettori V, Yu WH: The role of nitric oxide (NO) in control of LHRH release that mediates gonadotropin release and sexual behavior. Curr Pharm Des 2003, 9(5):381-390.
  • [47]McCann SM, Karanth S, Mastronardi CA, Dees WL, Childs G, Miller B, Sower S, Yu WH: Control of gonadotropin secretion by follicle-stimulating hormone-releasing factor, luteinizing hormone-releasing hormone, and leptin. Arch Med Res 2001, 32(6):476-485.
  • [48]Pinilla L, Gonzalez LC, Tena-Sempere M, Bellido C, Aguilar E: Effects of systemic blockade of nitric oxide synthases on pulsatile LH, prolactin, and GH secretion in adult male rats. Horm Res 2001, 55(5):229-235.
  • [49]Duvilanski BH, Zambruno C, Seilicovich A, Pisera D, Lasaga M, Diaz MC, Belova N, Rettori V, McCann SM: Role of nitric oxide in control of prolactin release by the adenohypophysis. Proc Natl Acad Sci U S A 1995, 92(1):170-174.
  • [50]Pinilla L, Tena-Sempere M, Aguilar E: Nitric oxide stimulates growth hormone secretion in vitro through a calcium- and cyclic guanosine monophosphate-independent mechanism. Horm Res 1999, 51(5):242-247.
  • [51]Cuttica CM, Giustil M, Bocca L, Sessarego P, De Martini D, Valenti S, Spaziante R, Giordano G: Nitric oxide modulates in vivo and in vitro growth hormone release in acromegaly. Neuroendocrinol 1997, 66(6):426-431.
  • [52]Bocca L, Valenti S, Cuttica CM, Spaziante R, Giordano G, Giusti M: Nitric oxide biphasically modulates GH secretion in cultured cells of GHsecreting human pituitary adenomas. Minerva Endocrinol 2000, 25(3–4):55-59.
  • [53]Modica-Napolitano JS, Singh KK: Mitochondria as targets for detection and treatment of cancer. Expert Rev Mol Med 2002, 4(9):1-19.
  • [54]Modica-Napolitano JS, Singh KK: Mitochondrial dysfunction in cancer. Mitochondrion 2004, 4(5–6):755-762.
  • [55]Musat M, Vax VV, Borboli N, Gueorguiev M, Bonner S, Korbonits M, Grossman AB: Cell cycle dysregulation in pituitary oncogenesis. Front Horm Res 2004, 32:34-62.
  • [56]Saeger W: Proliferation markers and cell cycle inhibitors in pituitary adenomas. Front Horm Res 2004, 32:110-126.
  • [57]Thakker RV: Multiple endocrine neoplasia type 1 (MEN1) and type 4 (MEN4). Mol Cell Endocrinol 2014, 386(1–2):2-15.
  • [58]Melmed S: Mechanisms for pituitary tumorigenesis: the plastic pituitary. J Clin Invest 2003, 112(11):1603-1618.
  文献评价指标  
  下载次数:45次 浏览次数:12次