期刊论文详细信息
BMC Research Notes
Capsule deletion via a λ-Red knockout system perturbs biofilm formation and fimbriae expression in Klebsiella pneumoniae MGH 78578
Pep Charusanti2  Bernhard O Palsson2  Shih-Feng Tsai1  Hwan-You Chang3  Irene Lam2  Tzu-Wen Huang2 
[1] Institute of Molecular and Genomic Medicine, National Health Research Institutes, 350 Zhunan, Taiwan;Department of Bioengineering, University of California, San Diego La Jolla, CA, 92093-0412 USA;Institute of Molecular Medicine, National Tsing Hua University, 30013 Hsinchu, Taiwan
关键词: Infectious disease;    Transmission electron microscopy;    Gene knockouts;    Expression profiling;    Fimbriae;    Biofilm;    Capsule;    Klebsiella pneumoniae;   
Others  :  1134943
DOI  :  10.1186/1756-0500-7-13
 received in 2013-08-01, accepted in 2013-12-31,  发布年份 2014
PDF
【 摘 要 】

Background

Klebsiella pneumoniae is a leading cause of hospital-acquired urinary tract infections and pneumonia worldwide, and is responsible for many cases of pyogenic liver abscess among diabetic patients in Asia. A defining characteristic of this pathogen is the presence of a thick, exterior capsule that has been reported to play a role in biofilm formation and to protect the organism from threats such antibiotics and host immune challenge.

Findings

We constructed two knockout mutants of K. pneumoniae to investigate how perturbations to capsule biosynthesis alter the cellular phenotype. In the first mutant, we deleted the entire gene cluster responsible for biosynthesis of the extracellular polysaccharide capsule. In the second mutant, we deleted the capsule export subsystem within this cluster. We find that both knockout mutants have lower amounts of capsule but produce greater amounts of biofilm. Moreover, one of the two mutants abolishes fimbriae expression as well.

Conclusions

These results are expected to provide insight into the interaction between capsule biosynthesis, biofilm formation, and fimbriae expression in this organism.

【 授权许可】

   
2014 Huang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150306110901212.pdf 729KB PDF download
Figure 4. 54KB Image download
Figure 3. 53KB Image download
Figure 2. 109KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Chung DR, Lee SS, Lee HR, Kim HB, Choi HJ, Eom JS, Kim JS, Choi YH, Lee JS, Chung MH, et al.: Emerging invasive liver abscess caused by K1 serotype Klebsiella pneumoniae in Korea. J Infection 2007, 54:578-583.
  • [2]Kohayagawa Y, Nakao K, Ushita M, Niino N, Koshizaki M, Yamamori Y, Tokuyasu Y, Fukushima H: Pyogenic liver abscess caused by Klebsiella pneumoniae genetic serotype K1 in Japan. J Infect Chemother 2009, 15:248-251.
  • [3]Siu LK, Fung CP, Chang FY, Lee N, Yeh KM, Koh TH, Ip M: Molecular typing and virulence analysis of serotype K1 Klebsiella pneumoniae strains isolated from liver abscess patients and stool samples from noninfectious subjects in Hong Kong, Singapore, and Taiwan. J Clin Microbiol 2011, 49:3761-3765.
  • [4]Fang CT, Lai SY, Yi WC, Hsueh PR, Liu KL, Chang SC: Klebsiella pneumoniae genotype K1: an emerging pathogen that causes septic ocular or central nervous system complications from pyogenic liver abscess. Clin Infect Dis 2007, 45:284-293.
  • [5]Fung CP, Chang FY, Lee SC, Hu BS, Kuo BI, Liu CY, Ho M, Siu LK: A global emerging disease of Klebsiella pneumoniae liver abscess: is serotype K1 an important factor for complicated endophthalmitis? Gut 2002, 50:420-424.
  • [6]Tsai FC, Huang YT, Chang LY, Wang JT: Pyogenic liver abscess as endemic disease, Taiwan. Emerg Infect Dis 2008, 14:1592-1600.
  • [7]Wang JH, Liu YC, Lee SS, Yen MY, Chen YS, Wann SR, Lin HH: Primary liver abscess due to Klebsiella pneumoniae in Taiwan. Clin Infect Dis 1998, 26:1434-1438.
  • [8]Abate G, Koh TH, Gardner M, Siu LK: Clinical and bacteriological characteristics of Klebsiella pneumoniae causing liver abscess with less frequently observed multi-locus sequences type, ST163, from Singapore and Missouri, US. J Microbiol Immunol 2012, 45:31-36.
  • [9]Pope JV, Teich DL, Clardy P, McGillicuddy DC: Klebsiella pneumoniae liver abscess: an emerging problem in North America. J Emerg Med 2011, 41:e103-e105.
  • [10]Kumarasamy KK, Toleman MA, Walsh TR, Bagaria J, Butt F, Balakrishnan R, Chaudhary U, Doumith M, Giske CG, Irfan S, et al.: Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: a molecular, biological, and epidemiological study. Lancet Infect Dis 2010, 10:597-602.
  • [11]Moellering RC Jr: NDM-1–a cause for worldwide concern. New Engl J Med 2010, 363:2377-2379.
  • [12]Podschun R, Ullmann U: Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, and pathogenicity factors. Clin Microbiol Rev 1998, 11:589-603.
  • [13]Fresno S, Jimenez N, Izquierdo L, Merino S, Corsaro MM, De Castro C, Parrilli M, Naldi T, Regue M, Tomas JM: The ionic interaction of Klebsiella pneumoniae K2 capsule and core lipopolysaccharide. Microbiology 2006, 152:1807-1818.
  • [14]Mizuta K, Ohta M, Mori M, Hasegawa T, Nakashima I, Kato N: Virulence for mice of Klebsiella strains belonging to the O1 group: relationship to their capsular (K) types. Infect Immun 1983, 40:56-61.
  • [15]Wu KM, Li LH, Yan JJ, Tsao N, Liao TL, Tsai HC, Fung CP, Chen HJ, Liu YM, Wang JT, et al.: Genome sequencing and comparative analysis of Klebsiella pneumoniae NTUH-K2044, a strain causing liver abscess and meningitis. J Bacteriol 2009, 191:4492-4501.
  • [16]Shu HY, Fung CP, Liu YM, Wu KM, Chen YT, Li LH, Liu TT, Kirby R, Tsai SF: Genetic diversity of capsular polysaccharide biosynthesis in Klebsiella pneumoniae clinical isolates. Microbiology 2009, 155:4170-4183.
  • [17]Domenico P, Salo RJ, Cross AS, Cunha BA: Polysaccharide capsule-mediated resistance to opsonophagocytosis in Klebsiella pneumoniae. Infect Immun 1994, 62:4495-4499.
  • [18]Evrard B, Balestrino D, Dosgilbert A, Bouya-Gachancard JL, Charbonnel N, Forestier C, Tridon A: Roles of capsule and lipopolysaccharide O antigen in interactions of human monocyte-derived dendritic cells and Klebsiella pneumoniae. Infect Immun 2010, 78:210-219.
  • [19]Lawlor MS, Hsu J, Rick PD, Miller VL: Identification of Klebsiella pneumoniae virulence determinants using an intranasal infection model. Mol Microbiol 2005, 58:1054-1073.
  • [20]Campos MA, Vargas MA, Regueiro V, Llompart CM, Alberti S, Bengoechea JA: Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infect Immun 2004, 72:7107-7114.
  • [21]Balestrino D, Ghigo JM, Charbonnel N, Haagensen JA, Forestier C: The characterization of functions involved in the establishment and maturation of Klebsiella pneumoniae in vitro biofilm reveals dual roles for surface exopolysaccharides. Environ Microbiol 2008, 10:685-701.
  • [22]Boddicker JD, Anderson RA, Jagnow J, Clegg S: Signature-tagged mutagenesis of Klebsiella pneumoniae to identify genes that influence biofilm formation on extracellular matrix material. Infect Immun 2006, 74:4590-4597.
  • [23]Schembri MA, Blom J, Krogfelt KA, Klemm P: Capsule and fimbria interaction in Klebsiella pneumoniae. Infect Immun 2005, 73:4626-4633.
  • [24]Schroll C, Barken KB, Krogfelt KA, Struve C: Role of type 1 and type 3 fimbriae in Klebsiella pneumoniae biofilm formation. BMC Microbiol 2010, 10:179. BioMed Central Full Text
  • [25]Herring CD, Glasner JD, Blattner FR: Gene replacement without selection: regulated suppression of amber mutations in Escherichia coli. Gene 2003, 311:153-163.
  • [26]Cherepanov PP, Wackernagel W: Gene disruption in Escherichia coli: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 1995, 158:9-14.
  • [27]Gust B, Challis GL, Fowler K, Kieser T, Chater KF: PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci USA 2003, 100:1541-1546.
  • [28]Wei D, Wang M, Shi J, Hao J: Red recombinase assisted gene replacement in Klebsiella pneumoniae. J Ind Microbiol Biotechnol 2012, 39:1219-1226.
  • [29]Stenutz R, Erbing B, Widmalm G, Jansson PE, Nimmich W: The structure of the capsular polysaccharide from Klebsiella type 52, using the computerised approach CASPER and NMR spectroscopy. Carbohyd Res 1997, 302:79-84.
  • [30]Domenico P, Schwartz S, Cunha BA: Reduction of capsular polysaccharide production in Klebsiella pneumoniae by sodium salicylate. Infect Immun 1989, 57:3778-3782.
  • [31]Qiu Y, Cho BK, Park YS, Lovley D, Palsson BO, Zengler K: Structural and operational complexity of the Geobacter sulfurreducens genome. Genome Res 2010, 20:1304-1311.
  • [32]Dong C, Beis K, Nesper J, Brunkan-Lamontagne AL, Clarke BR, Whitfield C, Naismith JH: Wza the translocon for E. coli capsular polysaccharides defines a new class of membrane protein. Nature 2006, 444:226-229.
  • [33]Whitfield C: Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu Rev Biochem 2006, 75:39-68.
  • [34]Dutton GG, Lim AV: Structural investigation of the capsular polysaccharide of Klebsiella serotype K35. Carbohyd Res 1985, 145:67-80.
  • [35]Dutton GG, Paulin M: Structure of the capsular polysaccharide of Klebsiella serotype K53. Carbohyd Res 1980, 87:107-117.
  • [36]Joseleau JP: Structural investigation of the capsular polysaccharide of Klebsiella serotype K 49. Carbohyd Res 1985, 142:85-92.
  • [37]Nath K, Chakraborty AK: Studies of the primary structure of the capsular polysaccharide from Klebsiella serotype K15. Carbohyd Res 1987, 161:91-96.
  • [38]Wang X, Preston JF 3rd, Romeo T: The pgaABCD locus of Escherichia coli promotes the synthesis of a polysaccharide adhesin required for biofilm formation. J Bacteriol 2004, 186:2724-2734.
  • [39]Huang YJ, Liao HW, Wu CC, Peng HL: MrkF is a component of type 3 fimbriae in Klebsiella pneumoniae. Res Microbiol 2009, 160:71-79.
  • [40]Wu MC, Lin TL, Hsieh PF, Yang HC, Wang JT: Isolation of genes involved in biofilm formation of a Klebsiella pneumoniae strain causing pyogenic liver abscess. PLoS One 2011, 6:e23500.
  文献评价指标  
  下载次数:73次 浏览次数:29次