期刊论文详细信息
BMC Research Notes
Development of the catfish 250K SNP array for genome-wide association studies
Zhanjiang Liu1  Huseyin Kucuktas1  Ludmilla Kaltenboeck1  Jianbin Feng1  Jiaren Zhang1  Yu Zhang1  Yanliang Jiang1  Fanyue Sun1  Yun Li1  Luyang Sun1  Shikai Liu1 
[1] The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, and Program of Cell and Molecular Biosciences, Auburn University, Auburn, AL 36849, USA
关键词: Genotyping;    GWAS;    SNP array;    Genome;    Fish;    Catfish;   
Others  :  1134311
DOI  :  10.1186/1756-0500-7-135
 received in 2013-12-11, accepted in 2014-02-28,  发布年份 2014
PDF
【 摘 要 】

Background

Quantitative traits, such as disease resistance, are most often controlled by a set of genes involving a complex array of regulation. The dissection of genetic basis of quantitative traits requires large numbers of genetic markers with good genome coverage. The application of next-generation sequencing technologies has allowed discovery of over eight million SNPs in catfish, but the challenge remains as to how to efficiently and economically use such SNP resources for genetic analysis.

Results

In this work, we developed a catfish 250K SNP array using Affymetrix Axiom genotyping technology. The SNPs were obtained from multiple sources including gene-associated SNPs, anonymous genomic SNPs, and inter-specific SNPs. A set of 640K high-quality SNPs obtained following specific requirements of array design were submitted. A panel of 250,113 SNPs was finalized for inclusion on the array. The performance evaluated by genotyping individuals from wild populations and backcross families suggested the good utility of the catfish 250K SNP array.

Conclusions

This is the first high-density SNP array for catfish. The array should be a valuable resource for genome-wide association studies (GWAS), fine QTL mapping, high-density linkage map construction, haplotype analysis, and whole genome-based selection.

【 授权许可】

   
2014 Liu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150305154959886.pdf 1315KB PDF download
Figure 9. 89KB Image download
Figure 8. 37KB Image download
Figure 7. 45KB Image download
Figure 6. 40KB Image download
Figure 5. 60KB Image download
Figure 4. 36KB Image download
Figure 3. 50KB Image download
Figure 2. 51KB Image download
Figure 1. 44KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]Gui JF, Zhu ZY: Molecular basis and genetic improvement of economically important traits in aquaculture animals. Chin Sci Bull 2012, 57(15):1751-1760.
  • [2]Zheng XH, Kuang YY, Lv WH, Cao DC, Zhang XF, Li C, Lu CY, Sun XW: A consensus linkage map of common carp (Cyprinus carpio L.) to compare the distribution and variation of QTLs associated with growth traits. Sci China Life Sci 2013, 56(4):351-359.
  • [3]Odegard J, Baranski M, Gjerde B, Gjedrem T: Methodology for genetic evaluation of disease resistance in aquaculture species: challenges and future prospects. Aquac Res 2011, 42:103-114.
  • [4]Kruglyak L: The use of a genetic map of biallelic markers in linkage studies. Nat Genet 1997, 17(1):21-24.
  • [5]Abasht B, Lamont SJ: Genome-wide association analysis reveals cryptic alleles as an important factor in heterosis for fatness in chicken F-2 population. Anim Genet 2007, 38(5):491-498.
  • [6]Wolc A, Arango J, Settar P, Fulton JE, O’Sullivan NP, Preisinger R, Habier D, Fernando R, Garrick DJ, Hill WG, Dekkers JM: Genome-wide association analysis and genetic architecture of egg weight and egg uniformity in layer chickens. Anim Genet 2012, 43:87-96.
  • [7]Becker D, Wimmers K, Luther H, Hofer A, Leeb T: A genome-wide association study to detect QTL for commercially important traits in swiss large white boars. Plos One 2013, 8(2):e55951.
  • [8]Sahana G, Kadlecova V, Hornshoj H, Nielsen B, Christensen OF: A genome-wide association scan in pig identifies novel regions associated with feed efficiency trait. J Anim Sci 2013, 91(3):1041-1050.
  • [9]Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value using genome-wide dense marker maps. Genetics 2001, 157(4):1819-1829.
  • [10]Khatkar MS, Nicholas FW, Collins AR, Zenger KR, Cavanagh JA, Barris W, Schnabel RD, Taylor JF, Raadsma HW: Extent of genome-wide linkage disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP panel. BMC Genomics 2008, 9:187. BioMed Central Full Text
  • [11]Kim ES, Berger PJ, Kirkpatrick BW: Genome-wide scan for bovine twinning rate QTL using linkage disequilibrium. Anim Genet 2009, 40(3):300-307.
  • [12]Brooks SA, Gabreski N, Miller D, Brisbin A, Brown HE, Streeter C, Mezey J, Cook D, Antczak DF: Whole-genome SNP association in the horse: identification of a deletion in myosin Va responsible for lavender foal syndrome. Plos Genet 2010, 6(4):e1000909.
  • [13]Kijas JW, Townley D, Dalrymple BP, Heaton MP, Maddox JF, McGrath A, Wilson P, Ingersoll RG, McCulloch R, McWilliam S, Tang D, McEwan J, Cockett N, Oddy VH, Nicholas FW, Raadsma H, the International Sheep Genomics Consortium: A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. Plos One 2009, 4(3):e4668.
  • [14]Becker D, Tetens J, Brunner A, Burstel D, Ganter M, Kijas J, Drogemuller C, Consortium ISG: Microphthalmia in texel sheep is associated with a missense mutation in the paired-like homeodomain 3 (PITX3) gene. Plos One 2010, 5(1):e8689.
  • [15]Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML: Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 2011, 12(7):499-510.
  • [16]Hoffmann TJ, Kvale MN, Hesselson SE, Zhan YP, Aquino C, Cao Y, Cawley S, Chung E, Connell S, Eshragh J, Ewing M, Gollub J, Henderson M, Hubbell E, Iribarren C, Kaufman J, Lao RZ, Lu Y, Ludwig D, Mathauda GK, McGuire W, Mei G, Miles S, Purdy MM, Quesenberry C, Ranatunga D, Rowell S, Sadler M, Shapero MH, Shen L, et al.: Next generation genome-wide association tool: design and coverage of a high-throughput european-optimized SNP array. Genomics 2011, 98(2):79-89.
  • [17]Matukumalli LK, Lawley CT, Schnabel RD, Taylor JF, Allan MF, Heaton MP, O’Connell J, Moore SS, Smith TPL, Sonstegard TS, Van Tassell CP: Development and characterization of a high density SNP genotyping assay for cattle. Plos One 2009, 4(4):e5350.
  • [18]McCue ME, Bannasch DL, Petersen JL, Gurr J, Bailey E, Binns MM, Distl O, Guerin G, Hasegawa T, Hill EW, Leeb T, Lindgren G, Penedo MC, Røed KH, Ryder OA, Swinburne JE, Tozaki T, Valberg SJ, Vaudin M, Lindblad-Toh K, Wade CM, Mickelson JR: A high density SNP array for the domestic horse and extant perissodactyla: utility for association mapping, genetic diversity, and phylogeny studies. Plos Genet 2012, 8(1):e1002451.
  • [19]Ramos AM, Crooijmans RPMA, Affara NA, Amaral AJ, Archibald AL, Beever JE, Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL, Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA, Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann RT, Schook LB, Groenen MA: Design of a high density SNP genotyping assay in the Pig using SNPs identified and characterized by next generation sequencing technology. Plos One 2009, 4(8):e6524.
  • [20]Miller JM, Poissant J, Kijas JW, Coltman DW, Consortium ISG: A genome-wide set of SNPs detects population substructure and long range linkage disequilibrium in wild sheep. Mol Ecol Resour 2011, 11(2):314-322.
  • [21]Meurs KM, Mauceli E, Lahmers S, Acland GM, White SN, Lindblad-Toh K: Genome-wide association identifies a deletion in the 3' untranslated region of striat in in a canine model of arrhythmogenic right ventricular cardiomyopathy. Hum Genet 2010, 128(3):351-324.
  • [22]Groenen MAM, Megens HJ, Zare Y, Warren WC, Hillier LW, Crooijmans RPMA, Vereijken A, Okimoto R, Muir WM, Cheng HH: The development and characterization of a 60K SNP chip for chicken. BMC Genomics 2011, 12(1):274. BioMed Central Full Text
  • [23]Rincon G, Weber KL, Van Eenennaam AL, Golden BL, Medrano JF: Hot topic: performance of bovine high-density genotyping platforms in holsteins and jerseys. J Dairy Sci 2011, 94(12):6116-6121.
  • [24]Mogensen MS, Karlskov-Mortensen P, Proschowsky HF, Lingaas F, Lappalainen A, Lohi H, Jensen VF, Fredholm M: Genome-wide association study in Dachshund: identification of a major locus affecting intervertebral disc calcification. J Hered 2011, 102(Suppl 1):S81-86.
  • [25]Kranis A, Gheyas AA, Boschiero C, Turner F, Yu L, Smith S, Talbot R, Pirani A, Brew F, Kaiser P, Hocking PM, Fife M, Salmon N, Fulton J, Strom TM, Haberer G, Weigend S, Preisinger R, Gholami M, Qanbari S, Simianer H, Watson KA, Woolliams JA, Burt DW: Development of a high density 600K SNP genotyping array for chicken. BMC Genomics 2013, 14:59. BioMed Central Full Text
  • [26]Sanchez CC, Smith TP, Wiedmann RT, Vallejo RL, Salem M, Yao J, Rexroad CE 3rd: Single nucleotide polymorphism discovery in rainbow trout by deep sequencing of a reduced representation library. BMC Genomics 2009, 10:559. BioMed Central Full Text
  • [27]Wang SL, Sha ZX, Sonstegard TS, Liu H, Xu P, Somridhivej B, Peatman E, Kucuktas H, Liu ZJ: Quality assessment parameters for EST-derived SNPs from catfish. BMC Genomics 2008, 9:450. BioMed Central Full Text
  • [28]Lien S, Gidskehaug L, Moen T, Hayes BJ, Berg PR, Davidson WS, Omholt SW, Kent MP: A dense SNP-based linkage map for Atlantic salmon (Salmo salar) reveals extended chromosome homeologies and striking differences in sex-specific recombination patterns. BMC Genomics 2011, 12:615. BioMed Central Full Text
  • [29]Gutierrez AP, Lubieniecki KP, Davidson EA, Lien S, Kent MP, Fukui S, Withler RE, Swift B, Davidson WS: Genetic mapping of quantitative trait loci (QTL) for body-weight in Atlantic salmon (Salmo salar) using a 6.5 K SNP array. Aquaculture 2012, 358:61-70.
  • [30]Liu SK, Zhou ZC, Lu JG, Sun FY, Wang SL, Liu H, Jiang YL, Kucuktas H, Kaltenboeck L, Peatman E, Liu ZJ: Generation of genome-scale gene-associated SNPs in catfish for the construction of a high-density SNP array. BMC Genomics 2011, 12:53. BioMed Central Full Text
  • [31]Sun L, Liu S, Wang R, Zhang Y, Zhang J, Jiang Y, Bao L, Kaltenboeck L, Waldbieser G, Kucuktas H, et al.: Snp Variations In The Catfish Genome: Factors To Consider For Snp Identification Using Next Generation Sequencing. (in review)
  • [32]Xu P, Wang SL, Liu L, Thorsen J, Kucuktas H, Liu ZJ: A BAC-based physical map of the channel catfish genome. Genomics 2007, 90(3):380-388.
  • [33]Ninwichian P, Peatman E, Liu H, Kucuktas H, Somridhivej B, Liu SK, Li P, Jiang YL, Sha ZX, Kaltenboeck L, Abernathy JW, Wang WQ, Chen F, Lee Y, Wong LL, Wang SL, Lu JG, Liu ZJ: Second-generation genetic linkage Map of catfish and its integration with the BAC-based physical Map. G3-Genes Genom Genet 2012, 2(10):1233-1241.
  • [34]Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM: Finding the missing heritability of complex diseases. Nature 2009, 461(7265):747-753.
  • [35]Wang SL, Peatman E, Abernathy J, Waldbieser G, Lindquist E, Richardson P, Lucas S, Wang M, Li P, Thimmapuram J, Liu L, Vullaganti D, Kucuktas H, Murdock C, Small BC, Wilson M, Liu H, Jiang YL, Lee Y, Chen F, Lu JG, Wang WQ, Xu P, Somridhivej B, Baoprasertkul P, Quilang J, Sha Z, Bao B, Wang Y, Wang Q: Assembly of 500,000 inter-specific catfish expressed sequence tags and large scale gene-associated marker development for whole genome association studies. Genome Biol 2010, 11(1):R8. BioMed Central Full Text
  • [36]Xu P, Wang SL, Liu L, Peatman E, Somridhivej B, Thimmapuram J, Gong G, Liu ZJ: Channel catfish BAC-end sequences for marker development and assessment of syntenic conservation with other fish species. Anim Genet 2006, 37(4):321-326.
  • [37]Liu H, Jiang YL, Wang SL, Ninwichian P, Somridhivej B, Xu P, Abernathy J, Kucuktas H, Liu ZJ: Comparative analysis of catfish BAC end sequences with the zebrafish genome. BMC Genomics 2009, 10:592. BioMed Central Full Text
  • [38]Simmons M, Mickett K, Kucuktas H, Li P, Dunham R, Liu ZJ: Comparison of domestic and wild channel catfish (Ictalurus punctatus) populations provides no evidence for genetic impact. Aquaculture 2006, 252(2–4):133-146.
  • [39]Kucuktas H, Wang SL, Li P, He CB, Xu P, Sha ZX, Liu H, Jiang YL, Baoprasertkul P, Somridhivej B, Wang Y, Abernathy J, Guo XM, Liu L, Muir W, Liu ZJ: Construction of genetic linkage maps and comparative genome analysis of catfish using gene-associated markers. Genetics 2009, 181(4):1649-1660.
  • [40]Liu ZJ, Li P, Argue B, Dunham R: Random amplified polymorphic DNA markers: usefulness for gene mapping and analysis of genetic variation of catfish. Aquaculture 1999, 174(1-2):59-68.
  • [41]Didion JP, Yang HN, Sheppard K, Fu CP, McMillan L, de Villena FPM, Churchill GA: Discovery of novel variants in genotyping arrays improves genotype retention and reduces ascertainment bias. BMC Genomics 2012, 13:34. BioMed Central Full Text
  文献评价指标  
  下载次数:70次 浏览次数:25次