期刊论文详细信息
BMC Microbiology
Impact of the exopolysaccharide layer on biofilms, adhesion and resistance to stress in Lactobacillus johnsonii FI9785
Arjan Narbad1  Melinda J Mayer1  Enes Dertli2 
[1] Gut Health and Food Safety Institute Strategic Programme, Institute of Food Research, Colney, Norwich NR4 7UA, UK;Department of Food Engineering, Faculty of Engineering, Bayburt University, Bayburt, Turkey
关键词: Cell surface;    Adhesion;    Biofilm;    Exopolysaccharides;    Lactobacillus johnsonii;   
Others  :  1137660
DOI  :  10.1186/s12866-015-0347-2
 received in 2014-10-08, accepted in 2015-01-13,  发布年份 2015
PDF
【 摘 要 】

Background

The bacterial cell surface is a crucial factor in cell-cell and cell-host interactions. Lactobacillus johnsonii FI9785 produces an exopolysaccharide (EPS) layer whose quantity and composition is altered in mutants that harbour genetic changes in their eps gene clusters. We have assessed the effect of changes in EPS production on cell surface characteristics that may affect the ability of L. johnsonii to colonise the poultry host and exclude pathogens.

Results

Analysis of physicochemical cell surface characteristics reflected by Zeta potential and adhesion to hexadecane showed that an increase in EPS gave a less negative, more hydrophilic surface and reduced autoaggregation. Autoaggregation was significantly higher in mutants that have reduced EPS, indicating that EPS can mask surface structures responsible for cell-cell interactions. EPS also affected biofilm formation, but here the quantity of EPS produced was not the only determinant. A reduction in EPS production increased bacterial adhesion to chicken gut explants, but made the bacteria less able to survive some stresses.

Conclusions

This study showed that manipulation of EPS production in L. johnsonii FI9785 can affect properties which may improve its performance as a competitive exclusion agent, but that positive changes in adhesion may be compromised by a reduction in the ability to survive stress.

【 授权许可】

   
2015 Dertli et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317121724198.pdf 917KB PDF download
Figure 5. 48KB Image download
Figure 4. 12KB Image download
Figure 3. 29KB Image download
Figure 2. 19KB Image download
Figure 1. 25KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Kasper H: Protection against gastrointestinal diseases–present facts and future developments. Int J Food Microbiol 1998, 41(2):127-31.
  • [2]Chaucheyras-Durand F, Durand H: Probiotics in animal nutrition and health. Benef Microbes 2010, 1(1):3-9.
  • [3]Santosa S, Farnworth E, Jones PJ: Probiotics and their potential health claims. Nutr Rev 2006, 64(6):265-74.
  • [4]La Ragione RM, Narbad A, Gasson MJ, Woodward MJ: In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry. Lett Appl Microbiol 2004, 38(3):197-205.
  • [5]Tuomola EM, Ouwehand AC, Salminen SJ: The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol Med Microbiol 1999, 26(2):137-42.
  • [6]Deepika G, Green RJ, Frazier RA, Charalampopoulos D: Effect of growth time on the surface and adhesion properties of Lactobacillus rhamnosus GG. J Appl Microbiol 2009, 107(4):1230-40.
  • [7]Lebeer S, Vanderleyden J, De Keersmaecker SC: Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2008, 72(4):728-64.
  • [8]Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, et al.: The extracellular biology of the lactobacilli. FEMS Microbiol Rev 2010, 34(2):199-230.
  • [9]Kos B, Suskovic J, Vukovic S, Simpraga M, Frece J, Matosic S: Adhesion and aggregation ability of probiotic strain Lactobacillus acidophilus M92. J Appl Microbiol 2003, 94(6):981-7.
  • [10]Vu B, Chen M, Crawford RJ, Ivanova EP: Bacterial extracellular polysaccharides involved in biofilm formation. Molecules 2009, 14(7):2535-54.
  • [11]Branda SS, Vik S, Friedman L, Kolter R: Biofilms: the matrix revisited. Trends Microbiol 2005, 13(1):20-6.
  • [12]Jones SE, Versalovic J: Probiotic Lactobacillus reuteri biofilms produce antimicrobial and anti-inflammatory factors. BMC Microbiol 2009, 9:35. BioMed Central Full Text
  • [13]Denou E, Pridmore RD, Berger B, Panoff JM, Arigoni F, Brussow H: Identification of genes associated with the long-gut-persistence phenotype of the probiotic Lactobacillus johnsonii strain NCC533 using a combination of genomics and transcriptome analysis. J Bacteriol 2008, 190(9):3161-8.
  • [14]Walter J, Schwab C, Loach DM, Ganzle MG, Tannock GW: Glucosyltransferase A (GtfA) and inulosucrase (Inu) of Lactobacillus reuteri TMW1.106 contribute to cell aggregation, in vitro biofilm formation, and colonization of the mouse gastrointestinal tract. Microbiology 2008, 154(Pt 1):72-80.
  • [15]Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, et al.: Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci U S A 2012, 109(6):2108-13.
  • [16]Hidalgo-Cantabrana C, López P, Gueimonde M, Suárez A, Margolles A, Ruas-Madiedo P: Immune modulation capability of exopolysaccharides synthesised by lactic acid bacteria and Bifidobacteria. Probiotics Antimicro Prot 2012, 4(4):227-37.
  • [17]Weiner R, Langille S, Quintero E: Structure, function and immunochemistry of bacterial exopolysaccharides. J Ind Microbiol 1995, 15(4):339-46.
  • [18]Kojic M, Jovcic B, Strahinic I, Begovic J, Lozo J, Veljovic K, et al.: Cloning and expression of a novel lactococcal aggregation factor from Lactococcus lactis subsp. lactis BGKP1. BMC Microbiol 2011, 11:265. BioMed Central Full Text
  • [19]Aslim B, Onal D, Beyatli Y: Factors influencing autoaggregation and aggregation of Lactobacillus delbrueckii subsp. bulgaricus isolated from handmade yogurt. J Food Prot 2007, 70(1):223-7.
  • [20]Horn N, Wegmann U, Dertli E, Mulholland F, Collins SRA, Waldron KW, et al.: Spontaneous mutations reveals influence of exopolysaccharide on Lactobacillus johnsonii surface characteristics. Plos One 2013, 8:e59957.
  • [21]Dertli E, Colquhoun IJ, Gunning AP, Bongaerts RJ, Le Gall G, Bonev BB, et al.: Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785. J Biol Chem 2013, 288:31938-51.
  • [22]Broadbent JR, McMahon DJ, Welker DL, Oberg CJ, Moineau S: Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci 2003, 86(2):407-23.
  • [23]Morona JK, Morona R, Miller DC, Paton JC: Mutational analysis of the carboxy-terminal (YGX)(4) repeat domain of CpsD, an autophosphorylating tyrosine kinase required for capsule biosynthesis in Streptococcus pneumoniae. J Bacteriol 2003, 185(10):3009-19.
  • [24]Reuter M, Mallett A, Pearson BM, van Vliet AH: Biofilm formation by Campylobacter jejuni is increased under aerobic conditions. Appl Environ Microbiol 2010, 76(7):2122-8.
  • [25]Schar-Zammaretti P, Ubbink J: The cell wall of lactic acid bacteria: surface constituents and macromolecular conformations. Biophys J 2003, 85(6):4076-92.
  • [26]La Ragione RM, Narbad A, Horn N, Evans H, Gasson MJ, Woodward MJ: The use of lactobacilli as a competitive exclusion agent for the control of bacterial pathogens in poultry. Reprod Nutr Dev 2002, 42:33-4.
  • [27]Minic Z, Marie C, Delorme C, Faurie JM, Mercier G, Ehrlich D, et al.: Control of EpsE, the phosphoglycosyltransferase initiating exopolysaccharide synthesis in Streptococcus thermophilus, by EpsD tyrosine kinase. J Bacteriol 2007, 189(4):1351-7.
  • [28]Schar-Zammaretti P, Dillmann ML, D'Amico N, Affolter M, Ubbink J: Influence of fermentation medium composition on physicochemical surface properties of Lactobacillus acidophilus. Appl Environ Microbiol 2005, 71(12):8165-73.
  • [29]van der Mei HC, van de Belt-Gritter B, Pouwels PH, Martinez B, Busscher HJ: Cell surface hydrophobicity is conveyed by S-layer proteins—a study in recombinant lactobacilli. Colloids Surf B Biointerfaces 2003, 28(2–3):127-34.
  • [30]Lebeer S, Verhoeven TL, Perea Velez M, Vanderleyden J, De Keersmaecker SC: Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 2007, 73(21):6768-75.
  • [31]Cesena C, Morelli L, Alander M, Siljander T, Tuomola E, Salminen S, et al.: Lactobacillus crispatus and its nonaggregating mutant in human colonization trials. J Dairy Sci 2001, 84(5):1001-10.
  • [32]Vizoso Pinto MG, Schuster T, Briviba K, Watzl B, Holzapfel WH, Franz CM: Adhesive and chemokine stimulatory properties of potentially probiotic Lactobacillus strains. J Food Prot 2007, 70(1):125-34.
  • [33]Canzi E, Guglielmetti S, Mora D, Tamagnini I, Parini C: Conditions affecting cell surface properties of human intestinal bifidobacteria. Antonie Van Leeuwenhoek 2005, 88(3–4):207-19.
  • [34]Roos S, Lindgren S, Jonsson H: Autoaggregation of Lactobacillus reuteri is mediated by a putative DEAD-box helicase. Mol Microbiol 1999, 32(2):427-36.
  • [35]Schachtsiek M, Hammes WP, Hertel C: Characterization of Lactobacillus coryniformis DSM 20001 T surface protein Cpf mediating coaggregation with and aggregation among pathogens. Appl Environ Microbiol 2004, 70(12):7078-85.
  • [36]Goh YJ, Klaenhammer TR: Functional roles of aggregation-promoting-like factor in stress tolerance and adherence of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2010, 76(15):5005-12.
  • [37]Gonzalez-Rodriguez I, Sanchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P, et al.: Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 2012, 78(11):3992-8.
  • [38]Voltan S, Castagliuolo I, Elli M, Longo S, Brun P, D'Inca R, et al.: Aggregating phenotype in Lactobacillus crispatus determines intestinal colonization and TLR2 and TLR4 modulation in murine colonic mucosa. Clin Vaccine Immunol 2007, 14(9):1138-48.
  • [39]Ventura M, Jankovic I, Walker DC, Pridmore RD, Zink R: Identification and characterization of novel surface proteins in Lactobacillus johnsonii and Lactobacillus gasseri. Appl Environ Microbiol 2002, 68(12):6172-81.
  • [40]Wegmann U, Overweg K, Horn N, Goesmann A, Narbad A, Gasson MJ, et al.: Complete genome sequence of Lactobacillus johnsonii FI9785, a competitive exclusion agent against pathogens in poultry. J Bacteriol 2009, 191(22):7142-3.
  • [41]Duary RK, Rajput YS, Batish VK, Grover S: Assessing the adhesion of putative indigenous probiotic lactobacilli to human colonic epithelial cells. Indian J Med Res 2011, 134(5):664-71.
  • [42]Duke GE: Gastrointestinal physiology and nutrition in wild birds. Proc Nutr Soc 1997, 56(3):1049-56.
  • [43]Sims IM, Frese SA, Walter J, Loach D, Wilson M, Appleyard K, et al.: Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100–23. ISME J 2011, 5(7):1115-24.
  文献评价指标  
  下载次数:21次 浏览次数:9次