期刊论文详细信息
BMC Microbiology
Antiadhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5
Anna Krasowska1  Marcin Łukaszewicz1  Tomasz Janek2 
[1] Faculty of Chemistry, Wroclaw University of Technology, Gdańska 9/7, Wroclaw 50-344, Poland;Faculty of Biotechnology, University of Wroclaw, Przybyszewskiego 63/77, Wroclaw 51-148, Poland
关键词: Uropathogenic microorganisms;    Biofilm;    Adhesion;    Lipopeptide;    Biosurfactant;   
Others  :  1222025
DOI  :  10.1186/1471-2180-12-24
 received in 2011-09-16, accepted in 2012-02-23,  发布年份 2012
PDF
【 摘 要 】

Background

Pseudofactin II is a recently identified biosurfactant secreted by Pseudomonas fluorescens BD5, the strain obtained from freshwater from the Arctic Archipelago of Svalbard. Pseudofactin II is a novel compound identified as cyclic lipopeptide with a palmitic acid connected to the terminal amino group of eighth amino acid in peptide moiety. The C-terminal carboxylic group of the last amino acid forms a lactone with the hydroxyl of Thr3.

Adhesion is the first stage of biofilm formation and the best moment for the action of antiadhesive and anti-biofilm compounds. Adsorption of biosurfactants to a surface e.g. glass, polystyrene, silicone modifies its hydrophobicity, interfering with the microbial adhesion and desorption processes. In this study the role and applications of pseudofactin II as a antiadhesive compound has been investigated from medicinal and therapeutic perspectives.

Results

Pseudofactin II lowered the adhesion to three types of surfaces (glass, polystyrene and silicone) of bacterial strains of five species: Escherichia coli, Enterococcus faecalis, Enterococcus hirae, Staphylococcus epidermidis,Proteus mirabilis and two Candida albicans strains. Pretreatment of a polystyrene surface with 0.5 mg/ml pseudofactin II inhibited bacterial adhesion by 36-90% and that of C. albicans by 92-99%. The same concentration of pseudofactin II dislodged 26-70% of preexisting biofilms grown on previously untreated surfaces. Pseudofactin II also caused a marked inhibition of the initial adhesion of E. faecalis, E. coli, E. hirae and C. albicans strains to silicone urethral catheters. The highest concentration tested (0.5 mg/ml) caused a total growth inhibition of S. epidermidis, partial (18-37%) inhibition of other bacteria and 8-9% inhibition of C. albicans growth.

Conclusion

Pseudofactin II showed antiadhesive activity against several pathogenic microorganisms which are potential biofilm formers on catheters, implants and internal prostheses. Up to 99% prevention could be achieved by 0.5 mg/ml pseudofactin II. In addition, pseudofactin II dispersed preformed biofilms. Pseudofactin II can be used as a disinfectant or surface coating agent against microbial colonization of different surfaces, e.g. implants or urethral catheters.

【 授权许可】

   
2011 Janek et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150804193338285.pdf 851KB PDF download
Figure 2. 108KB Image download
Figure 1. 221KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Nikolaev I, Plakunov VK: Biofilm-"City of microbes" or an analogue of multicellular organisms? Microbiologia 2007, 76:149-163.
  • [2]Vediyappan G, Rossignol T: d'Enfert C: Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 2010, 54:2096-2111.
  • [3]Zhao T, Liu Y: N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa. BMC Microbiology 2010, 10:140. BioMed Central Full Text
  • [4]Das P, Mukherjee S, Sen R: Antiadhesive action of a marine microbial surfactant. Colloids and Surfaces B: Biointerfaces 2009, 71:183-186.
  • [5]Rosenberg E, Ron EZ: High- and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 1999, 52:154-162.
  • [6]Mukherjee S, Das P, Sen R: Towards commercial production of microbial surfactants. Trends Biotechnol 2006, 24:509-515.
  • [7]Sotirova AV, Spasova DI, Galabova DN, Karpenko E, Shulga A: Rhamnolipid-biosurfactant permeabilizing effects on Gram-positive and Gram-negative bacterial strains. Curr Microbiol 2008, 56:639-644.
  • [8]Dusane DH, Nancharaiah YV, Zinjarde SS, Venugopalan VP: Rhamnolipid mediated disruption of marine Bacillus pumilus biofilms. Colloids and Surfaces B: Biointerfaces 2010, 81:242-248.
  • [9]Rivardo F, Turner RJ, Allegrone G, Ceri H, Martinotti MG: Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biotechnol 2009, 83:541-553.
  • [10]Huang X, Lu Z, Zhao H, Bie X, Lü FX, Yang S: Antiviral activity of antimicrobial lipopeptide from Bacillus subtilis fmbj against pseudorabies virus, porcine parvovirus, newcastle disease virus and infectious bursal disease virus in vitro. Int J Pept Res Ther 2006, 12:373-377.
  • [11]Rodrigues L, Banat IM, Teixeira J, Oliveira R: Biosurfactants: potential applications in medicine. J Antimicrob Chemother 2006, 57:609-618.
  • [12]Vollenbroich D, Pauli G, Ozel M, Vater J: Antimycoplasma properties and application in cell culture of surfactin, a lipopeptide antibiotic from Bacillus subtilis. Appl Environ Microbiol 1997, 63:44-49.
  • [13]Banat IM, Makkar RS, Cameotra SS: Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 2000, 53:495-508.
  • [14]Singh P, Cameotra SS: Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 2004, 22:142-146.
  • [15]Velraeds MMC, van der Mei HC, Reid G, Busscher HJ: Inhibition of initial adhesion of uropathogenic Enterococcus faecalis by biosurfactants from Lactobacillus isolates. Appl Environ Microbiol 1996, 62:1958-1963.
  • [16]Busscher HJ, van der Kuij-Booij M, van der Mei HC: Biosurfactants from thermophilic dairy streptococci and their potential role in the fouling control of heat exchanger plates. J Ind Microbiol Biotechnol 1996, 16:15-21.
  • [17]Krasowska A, Łukaszewicz M: Isolation, identification of Arctic microorganisms, and their proteolytic and lipolytic activity (Izolacja, identyfikacja oraz aktywność proteolityczna i lipolityczna mikroorganizmów arktycznych). [http:/ / www.aqua.ar.wroc.pl/ acta/ pl/ full/ 3/ 2011/ 000030201100010000010000500014.pdf] webciteActa Sci Pol Biotech 2011, 10:3-12.
  • [18]Krasowska A, Dąbrowska B, Łukaszewicz M: Isolation and characterization of microorganisms from Arctic archipelago of Svalbard. J Biotechnol 2007, 131:S240.
  • [19]Janek T, Łukaszewicz M, Rezanka T, Krasowska A: Isolation and characterization of two new lipopeptide biosurfactants produced by Pseudomonas fluorescens BD5 isolated from water from the Arctic Archipelago of Svalbard. Bioresource Technol 2010, 101:6118-6123.
  • [20]Kim KM, Lee JY, Kim CK, Kang JS: Isolation and characterization of surfactin produced by Bacillus polyfermenticus KJS-2. Arch Pharm Res 2009, 32:711-715.
  • [21]Gillum AM, Tsay EY, Kirsch DR: Isolation of the Candida albicans gene for orotidine-50-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet 1984, 198:179-182.
  • [22]Laycock M, Hildebrand PD, Thibault P, Walter JA, Wright JLC: Viscosin, a potent peptidolipid biosurfactant and phytopathogenic mediator produced by a pectolytic strain of Pseudomonas fluorescens. J Agr Food Chem 1991, 39:483-489.
  • [23]Youssef NH, Duncan KE, McInerney MJ: Importance of 3-hydroxy fatty acid composition of lipopeptides for biosurfactant activity. Appl Environ Microbiol 2005, 71:7690-7695.
  • [24]Peng F, Wang Y, Sun F, Liu Z, Lai Q, Shao Z: A novel lipopepitide produced by a Pacific Ocean deep-sea bacterium, Rhodococcus sp. TW53. J Appl Microbiol 2008, 105:698-705.
  • [25]Peypoux F, Bonmatin JM, Wallach J: Recent trends in the biochemistry of surfactin. Appl Microbiol Biotechnol 1999, 51:553-563.
  • [26]Besson F, Peypoux F, Michel G, Delcambe L: Characterization of iturin A in antibiotics from various strains of Bacillus subtilis. J Antibiot 1976, 29:1043-1049.
  • [27]Grangemard I, Wallach J, Maget-Dana R, Peypoux F: Lichenysin: a more efficient cation chelator than surfactin. Appl Biochem Biotechnol 2001, 90:199-210.
  • [28]Landman D, Georgescu C, Martin DA, Quale J: Polymyxins revisited. Clin Microbiol Rev 2008, 21:449-465.
  • [29]De Araujo LV, Abreu F, Lins U, de Melo Santa Anna LM, Nitschke M, D Guimarăes Freire DM: Rhamnolipid and surfactin inhibit Listeria monocytogenes adhesion. Food Research International 2011, 44:481-488.
  • [30]Gudińa EJ, Teixeira JA, Rodrigues LR: Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B 2010, 76:298-304.
  • [31]Irie Y, O'Toole GA, Yuk MH: Pseudomonas aeruginosa rhamnolipids disperse Bordetella bronchiseptica biofilms. FEMS Microbiology Lett 2005, 250:237-243.
  • [32]Mireles JR, Toguchi A, Harshey RM: Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 2001, 183:5848-5854.
  文献评价指标  
  下载次数:16次 浏览次数:17次