期刊论文详细信息
BMC Microbiology
Cigarette smoke condensate increases C. albicans adhesion, growth, biofilm formation, and EAP1, HWP1 and SAP2 gene expression
Mahmoud Rouabhia1  Witold Chmielewski1  Humidah Alanazi1  Kerstin Killer1  Abdelhabib Semlali2 
[1] Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, 2420 rue de la Terrasse, Québec G1V 0A6, Canada;Genome Research Chair, Department of Biochemistry, College of Science King Saud University, Riyadh, Kingdom of Saudi Arabia
关键词: Sap2;    HWP-1;    EAP-1;    Genes;    Biofilm;    Growth;    Adhesion;    C albicans;    Tobacco;    Cigarette smoke;   
Others  :  1141735
DOI  :  10.1186/1471-2180-14-61
 received in 2013-12-03, accepted in 2014-03-07,  发布年份 2014
PDF
【 摘 要 】

Background

Smokers are more prone to oral infections than are non-smokers. Cigarette smoke reaches the host cells but also microorganisms present in the oral cavity. The contact between cigarette smoke and oral bacteria promotes such oral diseases as periodontitis. Cigarette smoke can also modulate C. albicans activities that promote oral candidiasis. The goal of this study was to investigate the effect of cigarette smoke condensate on C. albicans adhesion, growth, and biofilm formation as well as the activation of EAP1, HWP1 and secreted aspartic protease 2.

Results

Cigarette smoke condensate (CSC) increased C. albicans adhesion and growth, as well as biofilm formation. These features may be supported by the activation of certain important genes. Using quantitative RT-PCR, we demonstrated that CSC-exposed C. albicans expressed high levels of EAP1, HWP1 and SAP2 mRNA and that this gene expression increased with increasing concentrations of CSC.

Conclusion

CSC induction of C. albicans adhesion, growth, and biofilm formation may explain the increased persistence of this pathogen in smokers. These findings may also be relevant to other biofilm-induced oral diseases.

【 授权许可】

   
2014 Semlali et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150327123753325.pdf 1230KB PDF download
Figure 7. 27KB Image download
Figure 6. 17KB Image download
Figure 5. 13KB Image download
Figure 4. 15KB Image download
Figure 3. 116KB Image download
Figure 2. 25KB Image download
Figure 1. 55KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Richardson M, Lass-Florl C: Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 2008, 14:5-24.
  • [2]Morschhauser J: Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 2010, 47:94-106.
  • [3]Rouabhia M, Ross G, Page N, Chakir J: Interleukin-18 and gamma interferon production by oral epithelial cells in response to exposure to Candida albicans or lipopolysaccharide stimulation. Infect Immun 2002, 70:7073-7080.
  • [4]Rouabhia M, Schaller M, Corbucci C, Vecchiarelli A, Prill SK, Giasson L, Ernst JF: Virulence of the fungal pathogen Candida albicans requires the five isoforms of protein mannosyltransferases. Infect Immun 2005, 73:4571-4580.
  • [5]Saunus JM, Kazoullis A, Farah CS: Cellular and molecular mechanisms of resistance to oral Candida albicans infections. Front Biosci 2008, 13:5345-5358.
  • [6]Park H, Liu Y, Solis N: Transcriptional responses of Candida albicans to epithelial and endothelial cells. Eukaryot Cell 2009, 8:1498-1510.
  • [7]Zakikhany K, Naglik JR, Schmidt-Westhausen A, Holland G, Schaller M, Hube B: In vivo transcript profiling of Candida albicans identifies a gene essential for inter-epithelial dissemination. Cell Microbiol 2007, 9:2938-2954.
  • [8]Costerton JWS, Stewart PS, Greenberg EP: Bacterial biofilms: a common cause of persistent infections. Science 1999, 284:1318-1322.
  • [9]Grant SS, Hung DT: Persistent bacterial infections, antibiotic tolerance, and the oxidative stress response. Virulence 2013, 4:273-283.
  • [10]Sundstrom P: Adhesion in Candida spp. Cell Microbiol 2002, 4:461-469.
  • [11]Nobile CJ, Nett JE, Andes DR, Mitchell AP: Function of Candida albicans adhesin Hwp1 in biofilm formation. Eukaryot Cell 2006, 5:1604-1610.
  • [12]Li F, Palecek SP: EAP1, a Candida albicans gene involved in binding human epithelial cells. Eukaryot Cell 2003, 2:1266-1273.
  • [13]Sohn K, Urban C, Brunner H, Rupp S: EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol 2003, 47:89-102.
  • [14]Stoldt VR, Sonneborn A, Leuker CE, Ernst JF: Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 1997, 16:1982-1991.
  • [15]Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR: Nonfilamentous C albicans mutants are avirulent. Cell 1997, 90:939-949.
  • [16]Schaller M, Borelli C, Korting HC, Hube B: Hydrolytic enzymes as virulence factors of Candida albicans. Mycoses 2005, 48:365-377.
  • [17]Décanis N, Tazi N, Correia A, Vilanova M, Rouabhia M: Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. Open Microbiol J 2011, 5:119-126.
  • [18]Naglik JR, Challacombe SJ, Hube B: Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev 2003, 67:400-428.
  • [19]Hube B, Naglik J: Candida albicans proteinases: resolving the mystery of a gene family. Microbiology 2001, 147:1997-2005.
  • [20]White TC, Agabian N: Candida albicans secreted aspartyl proteinases: isoenzyme pattern is determined by cell type, and levels are determined by environmental factors. J Bacteriol 1995, 177:5215-5221.
  • [21]Albrecht A, Felk A, Pichova I, Naglik JR, Schaller M, de Groot P, Maccallum D, Odds FC, Schäfer W, Klis F, Monod M, Hube B: Glycosylphosphatidylinositol-anchored proteases of Candida albicans target proteins necessary for both cellular processes and host-pathogen interactions. J Biol Chem 2006, 281:688-694.
  • [22]Nave R, Mueller H: From inhaler to lung: clinical implications of the formulations of ciclesonide and other inhaled corticosteroids. Int J Gen Med 2013, 6:99-107.
  • [23]Pinel B, Cassou-Mounat T, Bensadoun RJ: Oropharyngeal candidiasis and radiotherapy. Cancer Radiother 2012, 3:222-229.
  • [24]Fidel PL Jr: Candida-host interactions in HIV disease: implications for oropharyngeal candidiasis. Adv Dent Res 2011, 1:45-49.
  • [25]Baboni FB, Barp D, Izidoro AC, Samaranayake LP, Rosa EA: Enhancement of Candida albicans virulence after exposition to cigarette mainstream smoke. Mycopathologia 2009, 168(5):227-235.
  • [26]Soysa NS, Ellepola AN: The impact of cigarette/tobacco smoking on oral candidosis: an overview. Oral Dis 2005, 5:268-273.
  • [27]Goldstein-Daruech N, Cope EK, Zhao KQ, Vukovic K, Kofonow JM, Doghramji L, González B, Chiu AG, Kennedy DW, Palmer JN, Leid JG, Kreindler JL, Cohen NL: Tobacco smoke mediated induction of sinonasal microbial biofilms. PLoS One 2011, 6:e15700.
  • [28]Baboni FB, Guariza Filho O, Moreno AN, Rosa EA: Influence of cigarette smoke condensate on cariogenic and candidal biofilm formation on orthodontic materials. Am J Orthod Dentofacial Orthop 2010, 4:427-434.
  • [29]Weiner D, Khankin EV, Levy Y, Aizenbud D, Reznick AZ: Effects of cigarette smoke on salivary protein tyrosine nitration. Eur J Med Res 2010, 2:211-216.
  • [30]Abu-Elteen KH, Abu-Alteen RM: The prevalence of Candida albicans populations in the mouths of complete denture wearers. New Microbiol 1998, 21(1):41-48.
  • [31]Willis AM, Coulter WA, Fulton CR, Hayes JR, Bell PM, Lamey PJ: Oral candidal carriage and infection in insulin-treated diabetic patients. Diabet Med 1999, 16(8):675-679.
  • [32]Teughels W, Van Eldere J, van Steenberghe D, Cassiman JJ, Fives-Taylor P, Quirynen M: Influence of nicotine and cotinine on epithelial colonization by periodontopathogens. J Periodontol 2005, 8:1315-1322.
  • [33]Feldman C, Anderson R: Cigarette smoking and mechanisms of susceptibility to infections of the respiratory tract and other organ systems. J Infect 2013, 3:169-184.
  • [34]Gaworski CL, Dozier MM, Eldridge SR, Morrissey R, Rajendran N, Gerhart JM: Cigarette smoke vapor-phase effects on the rat upper respiratory tract. Inhalation Toxicol 1998, 10:857-873.
  • [35]Adam T, Mitschke S, Streibel T, Baker RR, Zimmermann R: Quantitative puff-by-puff-resolved characterization of selected toxic compounds in cigarette mainstream smoke. Chem Res Toxicol 2006, 19:511-520.
  • [36]Akerey B, Le-Lay C, Fliss I, Subirade M, Rouabhia M: In vitro efficacy of nisin Z against Candida albicans adhesion and transition following contact with normal human gingival cells. J Appl Microbiol 2009, 107:1298-1307.
  • [37]Kempf M, Cottin J, Licznar P, Lefrançois C, Robert R, Apaire-Marchais V: Disruption of the GPI protein-encoding gene IFF4 of Candida albicans results in decreased adherence and virulence. Mycopathologia 2009, 168:73-77.
  • [38]Finkel JS, Xu W, Huang D, Hill EM, Desai JV, Woolford CA, Nett JE, Taff H, Norice CT, Andes DR, Lanni F, Mitchell AP: Portrait of Candida albicans adherence regulators. PLoS Pathog 2012, 2:e1002525.
  • [39]Inglis DO, Skrzypek MS, Arnaud MB, Binkley J, Shah P, Wymore F, Sherlock G: Improved gene ontology annotation for biofilm formation, filamentous growth, and phenotypic switching in Candida albicans. Eukaryot Cell 2013, 12(1):101-108.
  • [40]Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J: Adherence and biofilm formation of non-Candida albicans Candida species. Trends Microbiol 2011, 19(5):241-247.
  • [41]Kulkarni R, Antala S, Wang A, Amaral FE, Rampersaud R, Larussa SJ, Planet PJ, Ratner AJ: Cigarette smoke increases staphylococcus aureus biofilm formation via oxidative stress. Infect Immun 2012, 80(11):3804-3811.
  • [42]Mutepe ND, Cockeran R, Steel HC, Theron AJ, Mitchell TJ, Feldman C, Anderson R: Effects of cigarette smoke condensate on pneumococcal biofilm formation and pneumolysin. Eur Respir J 2013, 41(2):392-395.
  • [43]Bagaitkar J, Daep CA, Patel CK, Renaud DE, Demuth DR, Scott DA: Tobacco smoke augments porphyromonas gingivalis-streptococcus gordonii biofilm formation. PLoS One 2011, 6(11):e27386.
  • [44]Gutiérrez-Escribano P, Zeidler U, Suárez MB, Bachellier-Bassi S, Clemente-Blanco A, Bonhomme J, de Aldana CR V, d’Enfert C, Correa-Bordes J: The NDR/LATS kinase Cbk1 controls the activity of the transcriptional regulator Bcr1 duringbiofilm formation in Candida albicans. PLoS Pathog 2012, 8(5):e1002683.
  • [45]Rouabhia M, Semlali A, Chandra J, Mukherjee P, Chmielewski W, Ghannoum MA: Disruption of the ECM33 gene in Candida albicans prevents biofilm formation, engineered human oral mucosa tissue damage and gingival cell necrosis/apoptosis. Mediators Inflamm 2012, 2012:398207.
  • [46]Li F, Svarovsky MJ, Karlsson AJ, Wagner JP, Marchillo K, Oshel P, Andes D, Palecek SP: Eap1p, an adhesin that mediates Candida albicans biofilm formation in vitro and in vivo. Eukaryot Cell 2007, 6:931-939.
  • [47]Sharkey LL, McNemar MD, Saporito-Irwin SM, Sypherd PS, Fonzi WA: HWP1 functions in the morphological development of Candida albicans downstream of EFG1, TUP1, and RBF1. J Bacteriol 1999, 181:5273-5279.
  • [48]Dostál J, Hamal P, Pavlícková L, Soucek M, Ruml T, Pichová I, Hrusková-Heidingsfeldová O: Simple method for screening Candida species isolates for the presence of secreted proteinases: a tool for the prediction of successful inhibitory treatment. J Clin Microbiol 2003, 41(2):712-716.
  • [49]Kantarcioglu AS, Yücel A: Phospholipase and protease activities in clinical Candida isolates with reference to the sources of strains. Mycoses 2002, 45(5–6):160-165.
  • [50]Kaminishi H, Miyaguchi H, Tamaki T, Suenaga N, Hisamatsu M, Mihashi I, Matsumoto H, Maeda H, Hagihara Y: Degradation of humoral host defense by Candida albicans proteinase. Infect Immun 1995, 63:984-988.
  • [51]Rouabhia M, Semlali A, Audoy J, Chmielewski W: Antagonistic effect of Candida albicans and IFNγ on E-cadherin expression and production by human primary gingival epithelial cells. Cell Immunol 2012, 280(1):61-67.
  • [52]Naglik J, Albrecht A, Bader O, Hube B: Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 2004, 6(10):915-926.
  • [53]Samaranayake YH, Cheung BP, Yau JY, Yeung SK, Samaranayake LP: Human serum promotes Candida albicans biofilm growth and virulence gene expression on silicone biomaterial. PLoS One 2013, 8(5):e62902.
  文献评价指标  
  下载次数:47次 浏览次数:12次