期刊论文详细信息
BMC Systems Biology
Modeling mutant phenotypes and oscillatory dynamics in the Saccharomyces cerevisiae cAMP-PKA pathway
Paul M Magwene1  David G Schaeffer1  Ömür Kayıkçı1  Kevin Gonzales1 
[1] IGSP Center for Systems Biology, Duke University, Durham, NC 27708, USA
关键词: Genetic variation;    Second messenger;    Signal transduction;    Yeast;   
Others  :  1142834
DOI  :  10.1186/1752-0509-7-40
 received in 2012-08-20, accepted in 2013-05-06,  发布年份 2013
PDF
【 摘 要 】

Background The cyclic AMP-Protein Kinase A (cAMP-PKA) pathway is an evolutionarily conserved signal transduction mechanism that regulates cellular growth and differentiation in animals and fungi. We present a mathematical model that recapitulates the short-term and long-term dynamics of this pathway in the budding yeast, Saccharomyces cerevisiae. Our model is aimed at recapitulating the dynamics of cAMP signaling for wild-type cells as well as single (pde1Δ and pde2Δ) and double (pde1Δpde2Δ) phosphodiesterase mutants.

Results Our model focuses on PKA-mediated negative feedback on the activity of phosphodiesterases and the Ras branch of the cAMP-PKA pathway. We show that both of these types of negative feedback are required to reproduce the wild-type signaling behavior that occurs on both short and long time scales, as well as the the observed responses of phosphodiesterase mutants. A novel feature of our model is that, for a wide range of parameters, it predicts that intracellular cAMP concentrations should exhibit decaying oscillatory dynamics in their approach to steady state following glucose stimulation. Experimental measurements of cAMP levels in two genetic backgrounds of S. cerevisiae confirmed the presence of decaying cAMP oscillations as predicted by the model.

Conclusions Our model of the cAMP-PKA pathway provides new insights into how yeast respond to alterations in their nutrient environment. Because the model has both predictive and explanatory power it will serve as a foundation for future mathematical and experimental studies of this important signaling network.

【 授权许可】

   
2013 Gonzales et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150328165939602.pdf 685KB PDF download
Figure 8. 38KB Image download
Figure 7. 32KB Image download
Figure 6. 34KB Image download
Figure 5. 19KB Image download
Figure 4. 41KB Image download
Figure 3. 21KB Image download
Figure 2. 44KB Image download
Figure 1. 52KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

【 参考文献 】
  • [1]Fimia GM, Sassone-Corsi P: Cyclic AMP signalling. J Cell Sci 2001, 114(Pt 11):1971-1972.
  • [2]Beavo JA, Brunton LL: Cyclic nucleotide research – still expanding after half a century. Nat Rev Mol Cell Biol 2002, 3(9):710-718.
  • [3]Holz GG, Kang G, Harbeck M, Roe MW, Chepurny OG: Cell physiology of cAMP sensor Epac. J Physiol 2006, 577(Pt 1):5-15. [http://dx.doi.org/10.1113/jphysiol.2006.119644 webcite]
  • [4]Rall TW, Sutherland EW: Formation of a cyclic adenine ribonucleotide by tissue particles. J Biol Chem 1958, 232(2):1065-1076.
  • [5]Carlone DL, Richards JS: Functional interactions, phosphorylation, and levels of 3’,5’-cyclic adenosine monophosphate-regulatory element binding protein and steroidogenic factor-1 mediate hormone-regulated and constitutive expression of aromatase in gonadal cells. Mol Endocrinol 1997, 11(3):292-304.
  • [6]Buck LB: Information coding in the vertebrate olfactory system. Annu Rev Neurosci 1996, 19:517-544. [http://dx.doi.org/10.1146/annurev.ne.19.030196.002505 webcite]
  • [7]Walsh DA, Perkins JP, Krebs EG: An adenosine 3’,5’-monophosphate-dependant protein kinase from rabbit skeletal muscle. J Biol Chem 1968, 243(13):3763-3765.
  • [8]Hong S, Bang S, Hyun S, Kang J, Jeong K, Paik D, Chung J, Kim J: cAMP signalling in mushroom bodies modulates temperature preference behaviour in Drosophila. Nature 2008, 454(7205):771-775. [http://dx.doi.org/10.1038/nature07090 webcite]
  • [9]Haynes RC, Sutherland EW, Rall TW: The role of cyclic adenylic acid in hormone action. Recent Prog Horm Res 1960, 16:121-138.
  • [10]Thevelein JM, de Winde JH: Novel sensing mechanisms and targets for the cAMP-protein kinase A pathway in the yeast Saccharomyces cerevisiae. Mol Microbiol 1999, 33(5):904-918.
  • [11]Toda T, Uno I, Ishikawa T, Powers S, Kataoka T, Broek D, Cameron S, Broach J, Matsumoto K, Wigler M: In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 1985, 40:27-36.
  • [12]Kraakman L, Lemaire K, Ma P, Teunissen AW, Donaton MC, Dijck PV, Winderickx J, de Winde JH, Thevelein JM: A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 1999, 32(5):1002-1012.
  • [13]van Aelst L, Jans AW, Thevelein JM: Involvement of the CDC25 gene product in the signal transmission pathway of the glucose-induced RAS-mediated cAMP signal in the yeast Saccharomyces cerevisiae. J Gen Microbiol 1991, 137(2):341-349.
  • [14]Broek D, Toda T, Michaeli T, Levin L, Birchmeier C, Zoller M, Powers S, Wigler M: The S. cerevisiae CDC25 gene product regulates the RAS/adenylate cyclase pathway. Cell 1987, 48(5):789-799.
  • [15]Créchet JB, Poullet P, Mistou MY, Parmeggiani A, Camonis J, Boy-Marcotte E, Damak F, Jacquet M: Enhancement of the GDP-GTP exchange of RAS proteins by the carboxyl-terminal domain of SCD25. Science 1990, 248(4957):866-868.
  • [16]Boy-Marcotte E, Ikonomi P, Jacquet M: SDC25, a dispensable Ras guanine nucleotide exchange factor of Saccharomyces cerevisiae differs from CDC25 by its regulation. Mol Biol Cell 1996, 7(4):529-539.
  • [17]Paiardi C, Belotti F, Colombo S, Tisi R, Martegani E: The large N-terminal domain of Cdc25 protein of the yeast Saccharomyces cerevisiae is required for glucose-induced Ras2 activation. FEMS Yeast Res 2007, 7(8):1270-1275. [http://dx.doi.org/10.1111/j.1567-1364.2007.00300.x webcite]
  • [18]Colombo S, Ma P, Cauwenberg L, Winderickx J, Crauwels M, Teunissen A, Nauwelaers D, de Winde JH, Gorwa MF, Colavizza D, Thevelein JM: Involvement of distinct G-proteins, Gpa2 and Ras, in glucose and intracellular acidification-induced cAMP signalling in the yeast Saccharomyces cerevisiae. EMBO J 1998, 17(12):3326-3341. [http://dx.doi.org/10.1093/emboj/17.12.3326 webcite]
  • [19]Colombo S, Ronchetti D, Thevelein JM, Winderickx J, Martegani E: Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 2004, 279(45):46715-46722. [http://dx.doi.org/10.1074/jbc.M405136200 webcite]
  • [20]Thevelein JM, Bonini B, Castermans D, Haesendonckx S, Kriel J, Louwet W, Thayumanavan P, Popova Y, Rubio-Texeira M, Schepers W, Vandormael P, Zeebroeck GV, Verhaert P, Versele M, Voordeckers K: Novel mechanisms in nutrient activation of the yeast protein kinase A pathway. Acta Microbiol Immunol Hung 2008, 55(2):75-89. [http://dx.doi.org/10.1556/AMicr.55.2008.2.1 webcite]
  • [21]Tanaka K, Matsumoto K, Toh-E A: IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Cell Biol 1989, 9(2):757-768.
  • [22]Tanaka K, Nakafuku M, Tamanoi F, Kaziro Y, Matsumoto K, Toh-e A: IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian Ras GTPase-activating protein. Mol Cell Biol 1990, 10(8):4303-4313.
  • [23]Rolland F, Winde JHD, Lemaire K, Boles E, Thevelein JM, Winderickx J: Glucose-induced cAMP signalling in yeast requires both a G-protein coupled receptor system for extracellular glucose detection and a separable hexose kinase-dependent sensing process. Mol Microbiol 2000, 38(2):348-358.
  • [24]Santangelo GM: Glucose signaling in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 2006, 70:253-282. [http://dx.doi.org/10.1128/MMBR.70.1.253-282.2006 webcite]
  • [25]Versele M, de Winde JH, Thevelein JM: A novel regulator of G protein signalling in yeast, Rgs2, downregulates glucose-activation of the cAMP pathway through direct inhibition of Gpa2. EMBO J 1999, 18(20):5577-5591. [http://dx.doi.org/10.1093/emboj/18.20.5577 webcite]
  • [26]Kehrl J, Sinnarajah S: RGS2: a multifunctional regulator of G-protein signaling. Int J Biochem Cell Biol 2002, 34(5):432-438.
  • [27]Toda T, Cameron S, Sass P, Zoller M, Scott JD, McMullen B, Hurwitz M, Krebs EG, Wigler M: Cloning and characterization of BCY1, a locus encoding a regulatory subunit of the cyclic AMP-dependent protein kinase in Saccharomyces cerevisiae. Mol Cell Biol 1987, 7(4):1371-1377.
  • [28]Toda T, Cameron S, Sass P, Zoller M, Wigler M: Three different genes in S.cerevisiae encode the catalytic subunits of the cAMP-dependent protein kinase. Cell 1987, 50(2):277-287.
  • [29]Gill GN, Garren LD: Role of the receptor in the mechanism of action of adenosine 3’:5’-cyclic monophosphate. Proc Natl Acad Sci U S A 1971, 68(4):786-790.
  • [30]Proud CG, Rylatt DB, Yeaman SJ, Cohen P: Amino acid sequences at the two sites on glycogen synthetase phosphorylated by cyclic AMP-dependent protein kinase and their dephosphorylation by protein phosphatase-III. FEBS Lett 1977, 80(2):435-442.
  • [31]Fang X, Yu SX, Lu Y, Bast RCJr, Woodgett JR, Mills GB: Phosphorylation and inactivation of glycogen synthase kinase 3 by protein kinase A. Proc Natl Acad Sci U S A 2000, 97(22):11960-1165.
  • [32]Taylor SS, Buechler JA, Yonemoto W: cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem 1990, 59:971-1005. [http://dx.doi.org/10.1146/annurev.bi.59.070190.004543 webcite]
  • [33]Francis SH, Corbin JD: Structure and function of cyclic nucleotide-dependent protein kinases. Annu Rev Physiol 1994, 56:237-272. [http://dx.doi.org/10.1146/annurev.ph.56.030194.001321 webcite]
  • [34]Mitsuzawa H: Responsiveness to exogenous cAMP of a Saccharomyces cerevisiae strain conferred by naturally occurring alleles of PDE1 and PDE2. Genetics 1993, 135(2):321-326.
  • [35]Ma P, Wera S, Dijck PV, Thevelein JM: The PDE1-encoded low-affinity phosphodiesterase in the yeast Saccharomyces cerevisiae has a specific function in controlling agonist-induced cAMP signaling. Mol Biol Cell 1999, 10:91-104.
  • [36]Conti M, Beavo J: Biochemistry and physiology of cyclic nucleotide phosphodiesterases: essential components in cyclic nucleotide signaling. Annu Rev Biochem 2007, 76:481-511. [http://dx.doi.org/10.1146/annurev.biochem.76.060305.150444 webcite]
  • [37]Park J, Grant CM, Dawes IW: The high-affinity cAMP phosphodiesterase of Saccharomyces cerevisiae is the major determinant of cAMP levels in stationary phase: involvement of different branches of the Ras-cyclic AMP pathway in stress responses. Biochem Biophys Res Commun 2005, 327:311-319. [http://dx.doi.org/10.1016/j.bbrc.2004.12.019 webcite]
  • [38]Wilson D, Fiori A, Brucker KD, Dijck PV, Stateva L: Candida albicans Pde1p and Gpa2p comprise a regulatory module mediating agonist-induced cAMP signalling and environmental adaptation. Fungal Genet Biol 2010, 47(9):742-752.
  • [39]Gonze D, Goldbeter MJA: Stochastic modelling of nucleocytoplasmic oscillations of the transcription factor Msn2 in yeast. J R Soc Interface 2008, 5(Suppl 1):S95-S109. [http://dx.doi.org/10.1098/rsif.2008.0141.focus webcite]
  • [40]Cazzaniga P, Pescini D, Besozzi D, Mauri G, Colombo S, Martegani E: Modeling and stochastic simulation of the Ras/cAMP/PKA pathway in the yeast Saccharomyces cerevisiae evidences a key regulatory function for intracellular guanine nucleotides pools. J Biotechnol 2008, 133(3):377-385. [http://dx.doi.org/10.1016/j.jbiotec.2007.09.019 webcite]
  • [41]Williamson T, Schwartz J, Kell DB, Stateva L: Deterministic mathematical models of the cAMP pathway in Saccharomyces cerevisiae. BMC Syst Biol 2009, 3:70. [http://dx.doi.org/10.1186/1752-0509-3-70 webcite] BioMed Central Full Text
  • [42]Garmendia-Torres C, Goldbeter A, Jacquet M: Nucleocytoplasmic oscillations of the yeast transcription factor Msn2: evidence for periodic PKA activation. Current Biol 2007, 17:1044-1049.
  • [43]Görner W, Durchschlag E, Martinez-Pastor MT, Estruch F, Ammerer G, Hamilton B, Ruis H, Schüller C: Nuclear localization of the C2H2 zinc finger protein Msn2p is regulated by stress and protein kinase A activity. Genes Dev 1998, 12(4):586-597. [http://genesdev.cshlp.org/content/12/4/586.long webcite]
  • [44]Hu Y, Liu E, Bai X, Zhang A: The localization and concentration of the PDE2-encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2010, 10(2):177-187.
  • [45]Lacal JC, McCormick F: The Ras Superfamily of GTPases. CRC Press; 1993.
  • [46]Pardo LA, Lazo PS, Ramos S: Activation of adenylate cyclase in Cdc25 mutants of Saccharomyces cerevisiae. FEBS Lett 1993, 319(3):237-243.
  • [47]Garreau H, Geymonat M, Renault G, Jacquet M: Membrane-anchoring domains of Cdc25p, a Saccharomyces cerevisiae Ras exchange factor. Biol Cell 1996, 86(2-3):93-102.
  • [48]Mintzer KA, Field J: The SH3 domain of the S. cerevisiae Cdc25p binds adenylyl cyclase and facilitates Ras regulation of cAMP signalling. Cell Signal 1999, 11(2):127-135.
  • [49]Gross E, Goldberg D, Levitzki A: Phosphorylation of the S. cerevisiae Cdc25 in response to glucose results in its dissociation from Ras. Nature 1992, 360(6406):762-765. [http://dx.doi.org/10.1038/360762a0 webcite]
  • [50]Gross A, Winograd S, Marbach I, Levitzki A: The N-terminal half of Cdc25 is essential for processing glucose signaling in Saccharomyces cerevisiae. Biochemistry 1999, 38(40):13252-13262.
  • [51]Segel I H: Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems. New York: John Wiley and Sons Inc.; 1993.
  • [52]Belotti F, Tisi R, Paiardi C, Rigamonti M, Groppi S, Martegani E: Localization of Ras signaling complex in budding yeast. Biochim Biophys Acta 2012, 1823(7):1208-1216.
  • [53]Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR: Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and RAS. Cell 1992, 68(6):1077-1090.
  • [54]Lorenz MC, Heitman J: Yeast pseudohyphal growth is regulated by GPA2, a G protein alpha homolog. EMBO J 1997, 16(23):7008-7018. [http://dx.doi.org/10.1093/emboj/16.23.7008 webcite]
  • [55]Dyachok O, Idevall-Hagren O, Sagetorp J, Tian G, Wuttke A, Arrieumerlou C, Akusjarvi G, Gylfe E, Tengholm A: Glucose-induced cyclic AMP oscillations regulate pulsatile insulin secretion. Cell Metab 2008, 8:26-37. [http://dx.doi.org/10.1016/j.cmet.2008.06.003 webcite]
  • [56]Gorbunova Y, Spitzer NC: Dynamic interactions of cyclic AMP transients and spontaneous Ca(2+) spikes. Nature 2002, 418(6893):93-96. [http://dx.doi.org/10.1038/nature00835 webcite]
  • [57]Maeda M, Lu S, Shaulsky G, Miyazaki Y, Kuwayama H, Tanaka Y, Kuspa A, Loomis WF: Periodic signaling controlled by an oscillatory circuit that includes protein kinases ERK2 and PKA. Science 2004, 304(5672):875-878. [http://dx.doi.org/10.1126/science.1094647 webcite]
  • [58]Dyachok O, Sagetorp J, Isakov Y, Tengholm A: cAMP oscillations restrict protein kinase A redistribution in insulin-secreting cells. Biochem Soc Trans 2006, 34(Pt 4):498-501. [http://dx.doi.org/10.1042/BST0340498 webcite]
  • [59]Hao N, O’Shea EK: Signal-dependent dynamics of transcription factor translocation controls gene expression. Nat Struct Mol Biol 2012, 19:31-39.
  • [60]Cai L, Dalal CK, Elowitz MB: Frequency-modulated nuclear localization bursts coordinate gene regulation. Nature 2008, 455(7212):485-490.
  • [61]Drees BL, Thorsson V, Carter GW, Rives AW, Raymond MZ, Avila-Campillo I, Shannon P, Galitski T: Derivation of genetic interaction networks from quantitative phenotype data. Genome Biol 2005, 6(4):R38. [http://dx.doi.org/10.1186/gb-2005-6-4-r38 webcite] BioMed Central Full Text
  • [62]Moré JJ, Sorensen DC, Hillstrom KE, Garbow BS: The MINPACK Project. In Sources and Development of Mathematical Software. Edited by Cowell WJ, Cowell WJ. Englewood Cliffs: Prentice-Hall; 1984.
  • [63]Jorgensen P, Nishikawa JL, Breitkreutz BJ, Tyers M: Systematic identification of pathways that couple cell growth and division in yeast. Science 2002, 297(5580):395-400.
  文献评价指标  
  下载次数:0次 浏览次数:1次