学位论文详细信息
Spin dependent transport in ferromagnetic particles
Electron transport;Nanoparticle
Jiang, Wenchao ; Davidovic, Dragomir Physics First, Phillip Jiang, Zhigang Pustinik, Michael Gokhale, Arun M. ; Davidovic, Dragomir
University:Georgia Institute of Technology
Department:Physics
关键词: Electron transport;    Nanoparticle;   
Others  :  https://smartech.gatech.edu/bitstream/1853/52204/1/JIANG-DISSERTATION-2014.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Spintronics is an emerging technology that arises from the interplay between spin of the charge carrier and the magnetic property of the materials. The miniaturization of spintronic devices requires a deep understanding of ferromagnetic materials at the nanometer scale. This thesis studies the properties of ferromagnetic particles (2-5nm in diameter) using electron transport measurements. A technique to fabricate nanoparticle devices and incorporate microwave in the electron tunneling measurement of the particles is presented. Repeated microwave pulses can directly excite the magnetization of the particles without heating the electrons.Results of the transport measurements on Co particles will be discussed, which demonstrate that electron tunneling through aferromagnetic particle can induce magnetization excitations in that particle. A physical model regarding the mesoscopic fluctuations is presented to address the current driven magnetization noise.Numerical simulations based on that model are performed to explain the experimental data and validate the model. Electron transport measurements on Ni, Fe, and Ni??Fe?? are conducted. The hysteretic behaviors of the particles in presence of electron tunneling have strong material dependence, which is mainly due to the magnetic shape anisotropy. Electron tunneling is a main source of magnetization noise, while other sources still need to be identified. Some data we collected from literature will be included in this thesis as an appendix.

【 预 览 】
附件列表
Files Size Format View
Spin dependent transport in ferromagnetic particles 5802KB PDF download
  文献评价指标  
  下载次数:24次 浏览次数:28次