Trends toward increased integration and miniaturization of optical system components have created pressure to consolidate widely disparate analog and digital functions onto fewer and fewer chips with a goal of eventually built into a single mixed-signal chip. Yet, because of those performance requirements, the frontend circuit has traditionally used III-V compound semiconductor technologies, but the low-level of integration with other digital ICs limits the sustainability of such end products for short-distance applications. On the other hand, their CMOS counter parts, despite having such advantages as low power consumption, high yield that lowers the cost of fabrication, and a higher degree of integration, have not performed well enough to survive in such a noisy environment without sacrificing other important attributes.In this research, a high-speed CMOS preamplifier was designed and fabricated through TSMC 0.18/spl mu/m mixed-signal non-epi CMOS technology, and a 20/spl mu/m diameter InGaAs thin-film Inverted-MSM photodetector with a responsivity of 0.15A/W at a wavelength of 1550/spl mu/m was post-integrated onto the circuit. The circuit has a overall transimpedance gain of 60dB/spl Omega/, and bit-error-rate data and eye-diagram measurement results taken as high as 10Gbit/s are reported in this dissertation.
【 预 览 】
附件列表
Files
Size
Format
View
Multi-Gbit/s CMOS Transimpedance Amplifier with Integrated Photodetector for Optical Interconnects