学位论文详细信息
Development of novel heteronanostructures engineered for electrochemical energy conversion devices
TiO2 nanotubes;Doping;SrTiO3;Solid oxide fuel cells
Amani Hamedani, Hoda ; Garmestani, Hamid Materials Science and Engineering Liu, Meilin Ahzi, Said Sandhage, Kenneth H. Alamgir, Faisal M. Jacob, Karl I. Khaleel, Mohammad A. ; Garmestani, Hamid
University:Georgia Institute of Technology
Department:Materials Science and Engineering
关键词: TiO2 nanotubes;    Doping;    SrTiO3;    Solid oxide fuel cells;   
Others  :  https://smartech.gatech.edu/bitstream/1853/52158/1/AMANIHAMEDANI-DISSERTATION-2013.pdf
美国|英语
来源: SMARTech Repository
PDF
【 摘 要 】

Heterogeneous nanostructures such as coaxial nanotubes, nanowires and nanorods have been of growing interest due to their potential for high energy-conversion efficiencies and charge/discharge rates in solar cell, energy storage and fuel cell applications. Their superior properties at nanoscale as well as their high surface area, fast charge transport along large interfacial contact areas, and short charge diffusion lengths have made them attractive components for next generation high efficiency energy-conversion devices. The primary focus of this work was to understand the doping mechanism of TiO2 nanotube exclusively with strontium as an alkaline earth metal to shine light on the relation between the observed enhancement in photocatalytic properties of doped TiO2 nanotubes and its structural and electronic characteristics. The mechanism of Sr incorporation into the TiO2 nanotube structure with the hypothesis of possibility of phase segregation has been explored in low concentrations as a dopant and in very high concentrations by processing of SrTiO3 nanotube arrays. Detailed experimental examination of the bulk and surface of the Sr-doped nanotubes has been performed to understand the effect of dopant on electronic structure and optical properties of the TiO2 nanotubes. Moreover, in order to minimize the polarizations associated with the ionic/electronic charge transport in the electrolyte and anode of solid oxide fuel cells (SOFCs), a new platform is developed using vertically oriented metal oxide nanotube arrays. This novel platform, which is made of coaxial oxide nanotubes on silicon substrates, has the potential to simultaneously lower the operating temperature and production cost leading to significant enhancement in the performance of micro-SOFCs.

【 预 览 】
附件列表
Files Size Format View
Development of novel heteronanostructures engineered for electrochemical energy conversion devices 9356KB PDF download
  文献评价指标  
  下载次数:37次 浏览次数:41次