期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY | 卷:215 |
A short note on the comparison of interpolation widths, entropy numbers, and Kolmogorov widths | |
Article | |
Steinwart, Ingo1  | |
[1] Univ Stuttgart, Fac Math & Phys 8, Inst Stochast & Applicat, D-70569 Stuttgart, Germany | |
关键词: Interpolation widths; Kolmogorov widths; Entropy numbers; Reproducing kernel Hilbert spaces; Sobolev spaces; | |
DOI : 10.1016/j.jat.2016.11.006 | |
来源: Elsevier | |
【 摘 要 】
We compare the Kolmogorov and entropy numbers of compact operators mapping from a Hilbert space into a Banach space. These general findings are then applied to embeddings between reproducing kernel Hilbert spaces and Loo (A). Here a sufficient condition for a gap of the order n(1/2) between the associated interpolation and Kolmogorov n-widths is derived. Finally, we show that in the multi-dimensional Sobolev case, this gap actually occurs between the Kolmogorov and approximation widths. (C) 2016 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jat_2016_11_006.pdf | 300KB | download |