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Abstract

We compare the Kolmogorov and entropy numbers of compact operators mapping from a Hilbert space
into a Banach space. These general findings are then applied to embeddings between reproducing kernel
Hilbert spaces and Loo(1t). Here a sufficient condition for a gap of the order n1/2 between the associated
interpolation and Kolmogorov n-widths is derived. Finally, we show that in the multi-dimensional Sobolev
case, this gap actually occurs between the Kolmogorov and approximation widths.
© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

For a measure space (X, A, 1) and a measurable function f : X — R we write [ f]~ for
the u-equivalence class of f, i.e., [ f]~ consists of all measurable functions that equal f up to
a p-zero set. Furthermore, L, (u) denotes the usual space of p-equivalence classes that have
a p-integrable representative. Now let H be a reproducing kernel Hilbert space (RKHS) over
X, that is, a Hilbert function space on which all point evaluation functionals are continuous,
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see [2,4,24]. Moreover, assume that the unique kernel k of H, see e.g. [24, Theorem 4.20], is
measurable. Then it is well-known, see e.g. [24, Lemma 4.24], that all functions contained in H
are measurable, and in particular we may consider the p-equivalence class [ f]~ of any f € H.
Let us further assume that, for some p € [2, oo], the corresponding linear map

Iy : H— Ly(p)

=11~
is well-defined, continuous, and even compact. For later use we note that for bounded kernels
k, finite measures n and p = 2, the operator Iy, is actually Hilbert—Schmidt, see e.g.

[25, Lemma 2.3]. In addition, [24, Corollary 4.31] shows that compactness of Iy, is guaranteed
for all p € [2,00], if X is a compact metric space, k is continuous, and u is a finite Borel
measure.

Now consider the linear interpolation n-width of H in L,(u), see e.g. [21,20,19] and the
references mentioned therein, that is

l/p
I(H, Lp(w) = inf (fx sup|f<x>—ADf(x)|”du<x)> ,

DCX,|D|<n feBy

with the usual modification for p = co. Here | D| denotes the cardinality of D = {x1,..., x,}
and Ap : H — H is the bounded linear operator defined by Ap f(x) = le,eD faf(x),
where o*(x) € R" is the unique solution of

n
Oy — Zaiaxi
i=1

For later use we note that we always have

2

* .
o (X) = arg min
(x) = arg min |

H

inf —A <I,(H, L 1
Dc)}ﬂDlsn fSeulg)H If = AbfllL,q < In( p(1)) (h

and equality holds in the extreme case p = 0o. Moreover, consider the classical Kolmogorov
n-width

d,(H, L = inf sup inf — ,
Vl( p(M)) FoCLp(1) fGIEH gEF, ”f g”LP(u)

where the left most infimum runs over all subspaces F,, of L, (u) with dim F,, < n. Note that the
lower bound of I, in (1) measures how well f can be approximated by a very particular linear
and n-dimensional subspace, whereas d,, measures how well f can be approximated by the best
n-dimensional scheme. Consequently, the approximation n-width

H, L = inf —A ,
an( p(1)) A:HlI)le(u) fS:lg)H If—AflL,w

where the infimum is taken over all bounded linear operators A : H — L ,(u) withrank A < n,
satisfies

dn(Hv Lp(,u)) = an(H: Lp(ﬂ)) = In(H, LP(M))-

Indeed, the right inequality immediately follows from (1), and the left inequality can be seen by
considering the image F}, := ran A of A and g := Af in the definition of d,,.
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In the Hilbert space case, that is, p = 2, these quantities are well understood. Indeed, the
general theory of s-numbers [17] shows, see e.g. Section 2, that

dn(H, Ly(w)) = an(H, La(1)) = v/ Ans1, 2)

where (1,) denotes the (extended and) ordered sequence of eigenvalues of the integral operator
Tv : Lo(u) — Lo(w) associated with the kernel k. Moreover, if H is a Sobolev space, then
I,(H, L, (1)) shares the asymptotic behavior of (2) and this can actually be achieved by taking
quasi-uniform points D C X, see [21]. Unfortunately, the situation changes in the other extreme,
namely p = oo. Indeed, if u is a finite measure, then (2) immediately yields

A% )\n+l =v //L(X) dn(H’ Loo(,bL)),

while [19, Theorem 3] shows that

o0

> ki = V() Li(H, Loo (). 3)

i=n+1

and in the Sobolev case, this lower bound is matched by an upper bound of the same asymptotic
behavior, see [20]. In the case of an algebraic decay of the eigenvalues, it is not hard to see that
there is a gap of the order n~ Y2 between the lower bounds for d,(H, Lo (1)) and I, (H, Loo (1)),
and this naturally raises the question of whether this gap actually occurs between the quantities of
interest, that is, between d,, (H, Loo(1t)) and I,,(H, Loo(12)). So far, a positive answer only exists
for the 1-dimensional Sobolev case, see e.g. [18, Chapter VII], or the remarks following (40) and
(41). The goal of this note is to provide a positive answer in a more general framework. To be
more precise, we show that for algebraically decaying eigenvalues we have d, (H, Loo (1)) <
VAnt1 if and only if the entropy numbers of the embedding Ix,, : H — Loo(p) behave
like «/A,+1. Using (3) this characterization gives a sufficient condition for the existence of the
gap. Similarly, we show that the gap occurs if the entropy numbers of I, : H — La(u)
and Iy, : H — Ly (i) have the same algebraic behavior. In addition, we present a result
that highlights the role of the eigenfunctions of 7. For the multi-dimensional Sobolev case we
then show, with the help of well-known asymptotics of the entropy and approximation numbers,
that the gap n=1/2 actually occurs between d,,(H, Loo(1t)) and a, (H, Lo (12)), that is, between
arbitrary n-dimensional approximation and linear n-dimensional approximation. In addition, the
cases p € (2, oo) are treated simultaneously.

The rest of this note is organized as follows: In Section 2 we recall the definition of entropy
numbers and also introduce some examples of s-number scales. Section 3 summarizes the
relationship between entropy numbers and the different s-number scales. In Section 4 two general
results comparing entropy and Kolmogorov numbers of compact operators are presented and
based upon these results the RKHS situation is investigated in more detail. In Section 5 we then
apply these findings to the multi-dimensional Sobolev case.

2. Preliminaries: entropy numbers, s-numbers, and eigenvalues

We write a, < b, for two positive sequences (a,) and (b,) if there exists a constant
¢ € (0,00) such that a, < cb, for all n > 1. Similarly, we write a, < b, if both a, < b,
and b, < a,. Finally, a positive sequence is called regular if there exists a constant ¢ € (0, 00)
such that a, < cay, and a,, < cay, for all 1 < m < n. Probably the most interesting examples of

regular sequences are a, =n~ ”(1 +1Inn)~9 for p > 0andg € R,or p =0and g > 0.
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In the following, £1(I) denotes the space of all R-valued, absolutely summable families
(yi)ier equipped with the usual sum-norm, that is |(y;)ierlle, () = Zie[ |yi|]. Similarly, we
write oo (1) for the space of all bounded, R-valued families (y;);<; equipped with the supremum
norm.

Given a Banach space E, we denote its closed unit ball by Bg and its dual by E’. Moreover, we
write Ir : F — {oo(BF) for the canonical embedding and QO : £1(Bg) — E for the canonical
surjection. Furthermore, we write £ < F if E C F and the inclusion map is continuous.
Finally, the adjoint of a bounded linear operator S acting between two Hilbert spaces is denoted
by S*.

Now, let E and F be Banach spaces and T : E — F be a bounded, linear operator. Then the
nth (dyadic) entropy number of T is defined by

2n—1
en(T) = inf{s >0:3xp,....xp1 € F:TBe C | x +eBF}.
i=1

Some elementary properties of entropy numbers can be found in [9, Chapter 1]. In particular,
we have ¢, (T) — 0 if and only if T is compact. Since T is compact if and only if its dual 7’
is compact, this immediately raises the question of how the entropy numbers of T and T’ are
related to each other. This question, known as the duality problem for entropy numbers has, so
far, no complete answer. Partial answers, however, do exist. The one we will need is the following
inequality taken from [6]

L supk!/P ex(T) < supk'/? ex(T") < d, supk'/? ex(T), 4)
p k=n k=<n k<n

which holds for all » > 1 and all compact T : E — F, whenever E or F is B-convex.
Here, d, € (0,00) is a constant, which depends on p € (0,00) and the geometry of the
involved spaces E and F, but which is independent of both n and T. Moreover, recall from e.g.
[10, Theorem 13.10] that a Banach space is B-convex if and only if it has non-trivial type. In
particular, Hilbert spaces are B-convex, and so are the spaces L, (u) for p € (1, oo) since these
spaces have type min{2, p}, see e.g. [10, Chapter 11]. Moreover, if E or F is a Hilbert space, it
was shown in [26] that we may choose d;, = 32 for all p € (0, oo). Finally note that from the
inequalities in (4) we can derive the following equivalences, which hold for all regular sequences
(o) and all compact operators 7'

en(T) < ay — en(T) < ay 5)
en(T) < ap — en(T/) = Up. (6)
For a proof, which is based on a little trick originating from Carl [8], we refer to the proof of
[23, Corollary 1.19] or, in a slightly simplified version, to the proof of [22, Proposition 2]. Finally,

if both E and F are Hilbert spaces one can show by polar decomposition, see e.g. [11, p. 9f], that
for all » > 1 we have

en(T) = en(T') = en(T™). @)

Besides entropy numbers, we are also interested in some so-called s-numbers. Namely, if
T : E — F is a bounded linear operator, we are interested in the nth approximation number of
T, defined by

a,(T) = inf{||T — A| | A : E — F bounded, linear with rank A < n},
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in the nth Gelfand number of T defined by
cn(T) = inf{||TI,‘550 || : Eq subspace of E with codim Eg < n},

where [/ go denotes the canonical inclusion of Ej into E, and in the nth Kolmogorov number of T
defined by

d,(T) = inf{||Q£)T|| : Fy subspace of F with dim Fyy < n},

where Q;O denotes the canonical surjection from the Banach space F onto the quotient space
F/Fy. Recall from [9, Proposition 2.2.2] that the latter quantity can also be expressed by

d,(T) = inf[e > (0 : 3F, subspace of F with dim F, <nand TBg C F, + eBF},

and consequently, we have

dp1(T) = inf sup inf [y —zllF,
nCF yeTBg 2€Fn
where the left most infimum runs over all subspaces F;, of F with dim F,, < n. In other words,
dn+1(T) equals the classical Kolmogorov n-width of the set T Bg in F, cf. [14, Chapter 13], and
therefore we have d,11(Ix,, : H — L,(n)) = dy(H, Lp(1)), where H and p are as in the
introduction. In addition, it is not hard to see that we also have a,1(Jx,, : H — Lp(u)) =
ay(H, L,(u)), and consequently we will consider the operator versions in the remaining parts
of this note. Furthermore, recall e.g. from [9, Theorems 2.3.1 and 2.2.1, and Proposition 2.5.5]
that we always have

cn(T) = an(IFT)

dn(T) = an(T Q)

dn(T) = en(T),
and for compact T its dual operator T’ additionally satisfies ¢, (T") = d,,(T), see [9, Proposi-
tion 2.5.6]. Moreover, the approximation, Gelfand, and Kolmogorov numbers are s-numbers in

the sense of [17, Definition 2.2.1], and it is shown in [9, Chapter 2.6] that the same is true for the
symmetrized approximation numbers or Tikhomirov numbers of T, which are defined by

t2(T) =a,(IrTQEg), n=>1

Unlike a,, c,, and d,,, however, the Tikhomirov numbers are not multiplicative s-numbers in the
sense of [17, Definition 2.2.18], see again [9, Chapter 2.6]. In any case, the introduced s-numbers
are ordered in the following sense:

t2(T) < cy(T) < ay(T) < V2ncy(T)
th(T) <dy(T) < an(T) < ~V2ndy(T),
where we note that in both cases the first two inequalities follow from s-number properties and

the right most inequalities can be found in [9, Propositions 2.4.3 and 2.4.6]. In addition, the factor

v/2n can be sharpened to 1 4+ /i — 1.

The two chains of inequalities above show that the gap between the asymptotic behavior of
(an), (cn) and (d,,) is at most of the order /z. It is well-known that this gap is sometimes attained,
see e.g. Section 5, while in other cases the gap vanishes. For example, we have

an(T) = ¢, (T), ®)
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if E is a Hilbert space, see [9, Proposition 2.4.1], or F has the metric extension property, see
[9, Proposition 2.3.3], and

ay(T) = dn(T), &)

if F is a Hilbert space, see [9, Proposition 2.4.4], or E has the metric lifting property, see
[9, Proposition 2.2.3]. In this respect recall that the spaces £oo(J) and Loo(u), where p is
some finite measure, have the metric extension property, see [9, p. 60] and [10, Theorem 4.14],
respectively. Moreover, the spaces £1(/) have the metric lifting property, see [9, p. 51]. By
combining all these relations we further see that we have #,(T) = a,(T) if either E = £;([)
and F = £ (J), or E and F are Hilbert spaces. The latter case also follows from a general
result showing that there is only one s-scale for operators between Hilbert spaces, see e.g.
[17, Theorem 2.11.9]. Finally, it may also be interesting to know that the approximation numbers
are the largest scale of s-numbers, see e.g. [17, Theorem 2.3.4], and that the Tikhomirov
numbers dominate the so-called Bernstein numbers b, and Mityagin numbers m,, see e.g.
[13, Lemmas 5.7 and 5.8] in combination with [9, Chapter 2.7].

Our next goal is to relate the s-numbers introduced above to eigenvalues. To this end, let
S : Hy — H; be a compact operator acting between two Hilbert spaces. Then S*S : Hy — H
is compact, self-adjoint and positive, and therefore the classical spectral theorem shows that
there is an at most countable family (1;(S*S));c; of eigenvalues of S*S, which in addition are
non-negative and have at most one limit point, namely 0. In the following, we always assume
that either / = {1,...,n} or I = N, and that the eigenvalues are ordered decreasingly without
excluding (geometric) multiplicities. Then, the singular numbers of S are defined by

5i(S) = VAi(S*S) = A (v S*S) ifiel

o ifi e N\ I.
Recall that this gives s; (S) = s;(S*) foralli > 1,and s;(T) = A;(T) foralli € I if T : H - H
is compact, self-adjoint and positive. Moreover, we have, see e.g. [17, Chapter 2.11]

5n(8) = an(9)

for all n > 1 and all compact operators S : H} — H» between Hilbert spaces Hy, H>.
3. Carl’s inequality and some inverse versions

In this section we recall some inequalities between s-numbers and entropy numbers. We begin
with Carl’s inequality which states that for all p € (0, co) there exists a constant Cj, € (0, c0)
such that for all bounded, linear 7 : E — F and all n > 1, we have

supk/Per(T) < Cpsupk/Pag(T). (10

k=<n k<n

We refer to [9, Theorem 3.1.1], where it is also shown that a possible value for the constant is
Cp = 128(32 + 16/ p)!/P. Recall from e.g. [9, Chapter 1.3] that entropy numbers are surjective
and weakly injective, and therefore we have

ex(T) = 2ex(IrT Q) < 2ex(T) Y

for all bounded, linear 7 : E — F and all kK > 1. In particular, we may replace the approximation
numbers in (10) by the Gelfand, Kolmogorov, or Tikhomirov numbers for the price of an
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additional factor of 2 in the constant. Moreover, like for the entropy numbers of T and 7', we
further have

an(T) < ay - en(T) < ay

for all regular sequences (o;) and all bounded linear 7 : E — F. It goes without saying that
the approximation numbers in this implication may be replaced by the Gelfand, Kolmogorov, or
Tikhomirov numbers.

Let us now recall some inequalities that describe how certain s-numbers are dominated by
entropy numbers. We begin with compact operators S : H; — H; acting between two Hilbert
spaces. Then [9, Inequality (3.0.9)] shows

an(8) = 2ex(S) 12)

for all n > 1. By an adaptation of the proof of [23, Corollary 1.19] we can then see that (12) in
combination with (10) leads to the following equivalences, which hold for all regular sequences
(oey) and all compact operators S : H; — H; acting between two Hilbert spaces:

a,(S) < oy = e, (S) < ay (13)
an(S) < ay = e (S) < . (14)

Again, the approximation numbers in these equivalences may be replaced by the Gelfand,
Kolmogorov, or Tikhomirov numbers. Finally, let us consider the compact, self-adjoint and
positive operator T : Hy — H; defined by S*S. Then we have

5i(T) = A (T) = 1 (S*S) = s7(5%) 15)
ifi e lands;(T) =0 = siz(S*) if i € N\ 1. The two equivalences above then lead to

s2(T) < ay = en(S™) < Ja, (16)

su(T) < ay, = en(8*) < o, (17

for all regular sequences (). Note that s, can be replaced by any s-number scale, and in
particular by the approximation, Gelfand, Kolmogorov, and Tikhomirov numbers. Moreover, we
may replace e, (S*) by e, (S) using the duality result (7) for entropy numbers.

Let us now consider the situation in which only one of the involved spaces is a Hilbert space,
that is, we consider compact operators of the form S : E — Hor S : H — F, where H is a
Hilbert space and E or F is an arbitrary Banach space. Then (10) still holds, but in general, we
may no longer have (12). To compare the s-numbers of T to the entropy numbers of 7', we thus
need a surrogate for (12). Fortunately, there are a few such results. For example, [16, Lemme 1]
shows that there exist constants A, B € (0, co) such that for all compact § : E — H and all
n > 1 we have

n'2c,(S) < B Y k(). (18)
k>An

With the help of this inequality it is easy to show that for all p € (0, 2) there exists another
constant B, € (0, 00) such that

n'Pe,(S) < B, sup k'/Per(S) (19)
k>An

for all compact S : E — H and all n > 1. We refer to the very short proof of [16, Théoréme A].
Complementary, [23, Theorem 5.12] shows that for all p € (2, 0o) there exists a constant
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K, € (0, c0) such that
supk/P1(S) < K, supk!/Per(S) (20)
k<n k<n

for all compact operators S : E — H or S : H — F and all n > 1. Last but not least we would
like to mention that [8, Theorem 6] showed an inequality of the form (20) with #; replaced by dj
or ¢ for all p € (0, 00) and all compact S : E — F for which E and F’ are type 2 spaces.

4. Main results

The goal of this section is to compare the entropy and Kolmogorov numbers of the embedding
It H — Loo(w). To this end, our first auxiliary result combines Carl’s inequality with its
inversed versions mentioned in Section 3.

Lemma 4.1. Let H be a Hilbert space, F be a Banach space S : H — F be a compact operator,
and p € (0, 2). Then, the following equivalence holds:

d,(S) <n~ VP — en(S) <n~1/P. (1)

Moreover, if F has the metric extension property, the equivalence is also true for p € (2, 00),
and in addition, we have

da(S) =xn" VP = e (S) =xn/P (22)
for such p. Finally, if F' has type 2, then (21) and (22) hold for all p € (0, 00).

Proof of Lemma 4.1. Independent of p and F, the implication “=" in (21) is a direct
consequence of Carl’s inequality (10). Indeed, d,(S) < n~1/P ensures that

K = supk'/Pdi(S) < oo,
k>1

and since (10) together with (11) yields
supk!/Pe(S) < 2supk'/Per(SQp) < 2C, supkPar(SQp)
n

k<n k<n k<

=2C, supk'/Pdi(S) < 2C,K,

k<n
we obtain e, (S) < n~'/7. For the proof of the converse implication we first consider the case
p € (0,2). By (4) or (5) we then know that ¢, (S’) < n=1/P and consequently (19) shows that
(8 <n~lp, Using ¢, (S") = d,,(S), which holds for compact operators S, we then obtain the

assertion. In the case p € (2, 00), we conclude by (20) that 1, (S) < n~1/P_ Moreover, F has the
metric extension property, and therefore we have ¢, (SQf) = a,(SQE) by (8). This leads to

0w (8) = an(IrSQE) = cn(SQE) = an(SQE) = dn(9),

and hence we find d,(S) < n~1/P_ In addition, (22) follows from combining (10) and (20), as
in the proof of [22, Proposition 2]. Finally, the last assertion can be shown analogously using
[8, Theorem 6] instead of (20). [

Note that the equivalences obtained in Lemma 4.1 also hold for regular sequences of the form
a, = n~YP(logn)?, where p satisfies the constraints of Lemma 4.1 and 8 € R. Indeed, for
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the second and third cases this can be deduced from (10) and (20), respectively [8, Theorem 6],
while in the first case this follows from (10), (19), and [17, G.3.2].

Clearly, Lemma 4.1 in particular holds for compact operators S : H — L,(u). Our next
result shows that for some spaces L, (x) even more information can be obtained.

Theorem 4.2. Let H be a Hilbert space, |1 be a finite measure, and p € [2, 0o]. Assume that we
have a compact operator S : H — L, () such that

en(S:H — Lo(p) = n™'/® (23)
for some a € (0, 2). Then, for all q € [2, p], the following equivalence holds:

do(S: H — Ly(w) =< n/® — en(S: H — Ly(w) < n~ '/
Proof of Theorem 4.2. “=": By Lemma 4.1, or more precisely Carl’s inequality, we already
know that e, (S : H — Lg4(1)) < n~Y® Moreover, using Lg(u) <> La(u) we find

nV < ey(S: H = La(w) < [1id: Lg(w) = Lol en(S - H = Ly (),

and thus e, (S : H — Ly (n)) < n-l/e,
“&”: By Lemma 4.1, we already know that d,,(S : H — Lg(u)) < n~—Y¢_ Moreover, by
(23), (14), and (9) we obtain d,, (S : H — La(u)) < n~ Y%, and hence we find

nV < dy (ST H = La(w) < id: Lg() = Lol da(S - H > Ly (),
thatis d, (S : H — Ly(n)) < n—le. O

Note that the entropy numbers in condition (23) can be replaced by the Kolmogorov numbers.
Indeed, (14) shows that (23) is equivalent to @, (S : H — La(n)) =< n~Y® and since we further
have a, (S) = d,,(S), we see that condition (23) can be replaced by

do(S: H — Lo(p)) < n~ "%, (24)

In addition, if H is an RKHS with kernel k and 7} denotes the integral operator associated with
k, then (24), or (23), can be replaced by

dn(Tic s La(w) = La(u)) = n=2/* (25)

with the help of (15). The following corollary summarizes our findings in this situation in view
of the gap discussed in the introduction.

Corollary 4.3. Let H be an RKHS of a bounded measurable kernel k on (X, A) and p be a finite
measure on the o -algebra A. If, in addition, we have

en(lk,/i H — Lz(u)) = e,,(]k,“ H — Loo(u)) =n~ /e
for some «a € (0, 2), then we have dy(H, Loo (1)) =< n= V% and n=Y*+t12 < [, (H, Loo(w)).

Proof of Corollary 4.3. The behavior d,(Ix,,, : H — Loo(n)) = n=1/® follows from
Theorem 4.2. Moreover, we know A; =< i —2/¢ by (15) and (17), and therefore, (3) shows

o o0
nm V2 N 2 < 1N G < V(X)) I (H, Loo (1),
i=n+1 i=n+1
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that is, we have also shown the second assertion. [

Our last result in this section shows that in the RKHS case and ¢ = oo the asymptotic behavior
en(Ip,ut H— Loo(n)) < n~ Y is inherited from certain real interpolation spaces between H
and L, (w). For its formulation we need the scale of interpolation spaces of the real method, see
e.g. [3, Chapter 5], as well as the notation [H]~ = {[f]~ : f € H}.

Theorem 4.4. Let H be an RKHS of a bounded measurable kernel k on (X, A) and  be a finite
measure on the o -algebra A such that A is ji-complete and that

en(Iku s H— La(p)) < n /e (26)

for some a € (0, 2). In addition assume that the interpolation space [L2(), [H]~1p 2 of the real
method is compactly embedded into Lo (1) for some B € (a/2, 1] with

en([L2(), [H1~1p2 = Loo()) < n P/ 27)

Then we have
en([L2(w), [H~1y2 = Loo()) < en([L2(1), [H]~y2 < La(w)) < nv/e (28)

forally € [B, 1], as well as e, (I, : H — Loo(n)) < n=l In particular, the conclusion
of Corollary 4.3 holds for both H and the spaces [La(w), [H]~], 2 forall y € [B, 1].

Before we prove this theorem we note that the interpolation spaces [L2 (), [H]~], 2 can be
identified as RKHSs, if, e.g., k is bounded and measurable, p is finite, A is u-complete, and
[L2(w), [H]~]y 2 is continuously embedded into Lo (1), see [25, Lemma 2.3, Proposition 4.2,
and Theorems 5.3 and 4.6]. To be more precise, these results show that there exists an RKHS
H ,{ of a bounded measurable kernel IE,):, namely the zero-extension of (31) defined below, such
that the map f +> [f]~ is an isometric isomorphism between H}, and [Ly(w), [H]~], 2. In
other words, we may pick, for all equivalence classes [g]~ € [L2(u), [H]~], 2, a representative
R}:g = f € H}f, thE_lt is, [f1~ = [g]~, such that the corresponding “lifting” map R}: :
[La(w), [HI~]y2 — H,)f is an isometric isomorphism. In particular, the interpolation spaces
in (27) and (28) can be viewed as RKHSs in this sense.

Proof of Theorem 4.4. We first consider the case 8 € («/2, 1). Since y > B, we then know
[La(w), [H]~1y2 <> [L2(w), [H]~]g,2 by e.g. [25, Theorems 4.3 and 4.6], and consequently
we have the following diagram of bounded linear embeddings:

[(L2(w), [H]~]y 2 > Loo(1t)

[L2(w), [H]-]1p,2
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The multiplicativity of entropy numbers thus yields

exn([L2(), [H1~1y2 = Loo(w))
< en([L2(w), [H1~1y2 = [La(w), [H1-18.2) - en(IL2(w), [H1~1p2 <> Loo(i)).
29)

Now recall from [25, Equation (36) and Theorem 4.6] that

[Lo(w), [H]~y 2 = {Zaixiy/z[ei]~ (@) € ezu)}, (30)
iel

where ();) is the sequence of eigenvalues of the integral operator Ty : Ly(n) — Lo(un) and

([ei]~) is a corresponding ONS of eigenfunctions. Moreover, the system ()Ll}.// 2[e,']N) is an ONB

of [La(wn), [H]~]y,2 with respect to an equivalent Hilbert space norm on [La(w), [H]~]y 2.

Consequently, we have the following diagram for the embedding [La(w), [H]~],2 <>

[L2(w), [H]~]1p,2:

[L2(w), [H]~]y 2

[L2(w), [H]~]1p,2

P -1
14 QSﬂ

O) ———F7— )
pyPP

where @, and Pg are the coordinate mappings and D%iﬂ )2 15 the diagonal operator associated

to the sequence (Alfy_ﬁ)/z). By (26), (15), and (17) we conclude that )»Ey_ﬂ)/z = =B/
Using [7, Proposition 2], which estimates entropy numbers of diagonal operators, and the
diagram above, we thus find

en([L2(w), [H)~1y2 <> [La(p), [H]-1p2) < n~ @A/,
Combining this with (29), (27), and the fact that p is a finite measure we obtain
en([L2(w), [H~1y2 < La(w)) < en([L2(w), [H]~]y.2 <> Loo(n)) < n Y,

To establish the lower bound, we recall from [25, Proposition 4.2 and Theorems 5.3 and 4.6] that,
for a suitable pu-zero set N, the space [Ly(u), [H]~], 2 can be identified with the RKHS over
X \ N, whose kernel is given by

ki (x,x') = "2l ei(x)ei(x),  x.x € X\N. 31)
iel
Since the eigenvalues of the corresponding integral operator are )»3/ = i~27/* we conclude from
(15) and (17) that e, ([L2 (), [H1~ly 2 = La(w)) < n~7/.
Finally, using ran Iy ;, = [H]~ and Theorem 4.2 the remaining assertions, namely the case
B =y =1 as well as the assertion for I; ;, : H — Lo (1) can be proven analogously. [

Theorem 4.4 essentially states that the property (28) is passed down from the large spaces in
the scale of spaces [L2(u), [H]~]s,2 to the smaller ones. Moreover, using the spaces on the right
hand side of (30) instead of the interpolation spaces, it can easily be seen that the result is also true
for y > 1. In addition, the representation (30) suggests that the eigenfunctions may play a crucial
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role in determining whether (27), and thus (28), hold. In this respect note that [15, Lemma 5.1]
essentially established the continuous embedding [Ly (1), [H]~]a/2,1 <> Loo(ut) provided that
(26) holds and that the eigenfunctions are not only bounded but uniformly bounded. From this it
is easy to conclude that [Ly (1), [H]~]g,2 <> Loo(it) holds for all 8 € (a/2, 1). In addition, the
case [La(u), [H]~1p2 <> Loo(p) for B € (0, a/2] can always be excluded, since [25, Theorem

5.3] shows that such an inclusion would imply > ., )\{5 < oo for the eigenvalues of the integral
operator Ty, and this summability clearly contradicts (26) by (15) and (17). Summarizing, we
think that understanding when (27) holds for some § close to «/2 is an interesting question for
future research.

5. An example: Sobolev spaces

The goal of this section is to illustrate the consequences of Lemma 4.1 and Theorem 4.2
by applying them to embeddings of the form id : H — L,(u), where H is a Sobolev space,
X C R4 is a suitable subset, u is the Lebesgue measure on X, and p € [2, co].

We begin by recalling some basics on Sobolev spaces. To this end let X ¢ R? be a non-
empty, open, and connected subset satisfying the strong local Lipschitz condition in the sense
of [1, p. 83]. For m > 1 being an integer, we denote the classical Sobolev space on X that is
defined by weak derivatives, see e.g. [1, pp. 59-60], by W™ (X) := W™2(X).

For m > d/2, it is well-known that the embedding id : W"(X) — Cp(X) is compact, see
e.g. [1, Theorem 6.3] in combination with [1, p. 84]. Therefore, the embeddings id : W (X) —
Lo (X) are compact, and if X has finite Lebesgue measure, we also obtain the compactness of the
embeddings id : W™ (X) — L,(X), where we followed the standard notation L ,(X) = L, (u).
Note that an immediate consequence of this is that the approximation and entropy numbers
of these embeddings converge to zero. Let us recall some results from [11] that describe the
asymptotic behavior of these numbers. To this end, note that a consequence of Stein’s extension
theorem, see [1, Theorem 5.24] is that

/11 == inf{llgllynga) : g € W™ (RY) with gix = [}, (32)

where f € W™ (X), defines an equivalent norm on W (X). Moreover, if for s € [0, co) and
P, q, € (0, 00] we write B;, q (R?) and F ;;7 q(Rd) for the Besov and Triebel-Lizorkin spaces in
the sense of [11, p. 24f], then we have Bg’fz(Rd) = Fz’f'z(Rd) = W™ (R?) by [11, p. 44 and
p- 25]. By (32) we conclude that the spaces Bg"z(X ) defined by restrictions as in [11, p. 57]
satisfy

By'5(X) = W"(X) (33)

up to equivalent norms. Moreover, [11, p. 25] shows that FI?,Z(Rd) = L,(R%),and by [11, p. 44]
we find continuous embeddings Bg LR — L,RY) — BY ,(R) forall p € [2, 00). By (32)
we conclude that

B) ,(X) = L,(X) = B ,(X). (34)

Similarly, recall that we have continuous embeddings Bgo I(Rd ) — Loo(Rd) — Bgo RY ),

see e.g. [11, p. 44], and thus we also have the continuous embeddings

ool

B2, |(X) & Loo(X) = B, (X). (35)
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Let us now assume that X is open, connected, and bounded, and that it has a C*°-boundary.
Moreover, we fix some s1,sy € [0,00) and pi, p2,91,92 € (0,00] such that s — s >
d(% — %)Jr Then [11, Theorem 2 on p. 118] shows that

en(id: Bl (X) = B (X)) = n~ G170/, (36)

and if we additionally assume that 2 < py < p» < oo, then [11, p. 119] shows that

an(id : B} , (X) > B2 (X)) = n~G172/dtl/m=1/p2, (37)

In particular, for s = 5, p1 = q1 = 2,50 =0, po = p € [2,0¢], and ¢» = g € [1, 0o] with

s > d(% - %) we obtain

en(id : By ,(X) — B (X)) =< n~*/
an(id : By ,(X) = BY) (X)) =< n~¥/4T12=1/p,
By (33), (34), and (35) we conclude that
en(id: W™ (X) — Lp(X)) < n~™/ (38)
an(id : W™(X) — Lp(X)) = n—m/d¥1/2=1/p (39)

forallm € Nwithm > d (% — %). In other words, the gap between the entropy and approximation

numbers is of the order n'/2~1/7_ Note that for the Hilbert space case, i.e. p = 2, the gap vanishes
as already observed in Section 3, while in the other extreme p = oo, the gap is of the order n'/2.
Finally, we see by (32) that these asymptotics still hold if we only assume that X is an open,
connected, and bounded subset of R? satisfying the strong local Lipschitz condition.

To illustrate these findings, we now consider the linear interpolation n-width mentioned in the
introduction. To this end, we fix an m € N withm > d/2 and let H = W (X) with equivalent
norms. Then (39) shows

nmM AP g, (id s H — Lp(X)) < 1(H, Lp(X)) (40)

for all p € [2, 00]. Here we note that in the case p = oo, the lower bound n~"/4+1/2 <

I, (H , Loo(X )) already follows from (3). Moreover, (38) in combination with Theorem 4.2
yields

dy(id: H — L,y(X)) = n~™/ A1)

for all p € [2, oo]. In other words, the gap of 1/2 — 1/p actually occurs between the non-linear
approximation described by d,, and the linear approximation described by a,. Moreover, the gap
is maximal for p = oo and vanishes in the other extreme case p = 2.

At this point, we would like to mention that in the one-dimensional case (39) and (41) have
already been shown by [5] and [12], respectively, and therefore the gap between d, and a,, or
d, and I, is well-known in the one-dimensional case. For d > 1, however, (41) is not contained
in the list of known asymptotics compiled in [27], and assuming that this list is complete, (41)
may thus be new for d > 1. In addition, the gap between d,, and a,, is solely derived from the
same gap between e, and ay, that is, from (38) and (39). In other words, we will observe a gap
between d,, and a, if and only if there is a gap between e, and a,. Fortunately, the latter two
quantities have been considered for various other spaces H and measures i, so that it should be
possible to compile a list of cases, in which the gap occurs. For the same reason, it should be also
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possible to find more cases in which a gap between d, and I, occurs using the entropy number
assumption of Corollary 4.3.

For convenience, the following corollary summarizes our findings for sufficiently large
subspaces of W™ (X). Together with Theorem 4.4 it particularly applies to kernels of many
standard Gaussian processes, such as the iterated Brownian motion and Brownian bridge, see
e.g. the numerical example in [19].

Corollary 5.1. Let X C R? be an open, connected, and bounded subset satisfying the strong
Lipschitz condition. Moreover, let H be an RKHS over X with kernel k such that H — W"(X)
for some integer m > d /2. Assume, in addition, that

e,,([k,ﬂ tH — LZ(X)) = p—m/

holds. Then we have
dy(H, Loo(X)) < 0™ and  n=™9%V2 < 1, (H, Loo(X)).

In addition, if H = W™ (X) with equivalent norms, then, for all p € [2, c0], we have
d,,(H, LI,(X)) =n"4 and npmAE2-1P o an(H, L,,(X)).

Proof of Corollary 5.1. We first note that the sequence of estimates
T < ey (Lt H — Lo(X)) < en(Teu s H— Loo(X))

< en(Ikp : W"(X) > Loo(X))
= pm/

yields e, (Ik,u : H — LOO(X)) = n~™/4 and therefore Corollary 4.3 shows the first two
assertions. The second set of asymptotic equivalences immediately follows from (41) and
40). O
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