期刊论文详细信息
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 卷:424
On greedy algorithm approximating Kolmogorov widths in Banach spaces
Article
Wojtaszczyk, P.
关键词: Non-linear approximation;    Greedy algorithm;    Reduced basis method;    Kolmogorov widths;   
DOI  :  10.1016/j.jmaa.2014.11.054
来源: Elsevier
PDF
【 摘 要 】

The greedy algorithm to produce n-dimensional subspaces X-n to approximate a compact set F contained in a Hilbert space was introduced in the context of reduced basis method in [12,13]. The same algorithm works for a general Banach space and in this context was studied in [4]. In this paper we study the case F subset of L-p. If Kolmogorov diameters d(n)(F) of F decay as n(-alpha) we give an almost optimal estimate for the decay of sigma(n) := dist(F,X-n). We also give some direct estimates of the form sigma(n) <= C(n)d(n)(F). (C) 2014 Published by Elsevier Inc.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jmaa_2014_11_054.pdf 347KB PDF download
  文献评价指标  
  下载次数:2次 浏览次数:0次