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The greedy algorithm to produce n-dimensional subspaces Xn to approximate 
a compact set F contained in a Hilbert space was introduced in the context of 
reduced basis method in [12,13]. The same algorithm works for a general Banach 
space and in this context was studied in [4]. In this paper we study the case F ⊂ Lp. 
If Kolmogorov diameters dn(F) of F decay as n−α we give an almost optimal 
estimate for the decay of σn := dist(F , Xn). We also give some direct estimates of 
the form σn ≤ Cndn(F).

© 2014 Published by Elsevier Inc.

1. Introduction

Let X be a Banach space with norm ‖ · ‖ := ‖ · ‖X , and let F be one of its compact subsets. For 
notational convenience only, unless stated otherwise we shall assume that the elements f of F satisfy 
‖f‖X ≤ 1. We consider the following greedy algorithm for generating approximation spaces for F . We first 
choose a function f0 such that

‖f0‖ = max
f∈F

‖f‖. (1)

Assuming {f0, . . . , fn−1} and Vn := span{f0, . . . , fn−1} have been selected, we then take fn ∈ F such that

dist(fn, Vn)X = max
f∈F

dist(f, Vn)X , (2)

and define

σn := σn(F ;X) := dist(fn, Vn)X := sup
f∈F

inf
g∈Vn

‖f − g‖. (3)
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This greedy algorithm was introduced, for the case X is a Hilbert space, in the reduced basis method [12,13]
for solving a family of PDEs. This algorithm and certain variants of it, known as weak greedy algorithms, are 
now numerically implemented with great success in the reduced basis method applied for various problems, 
see e.g. [3,6,5].

The study of this algorithm in the context of a general Banach space was carried out in [4]. In this paper 
we continue this line.

We feel that this greedy algorithm and our results can be of interest outside the scope of reduced basis 
methods. First there is a substantial interest in subspace approximation of large data sets in high dimensional 
spaces (see e.g. [8] and the references given there). In some cases this reduces to finding an almost optimal 
subspace for Kolmogorov width, which is the problem we deal with in the present paper. Second, in many
cases an almost optimal subspace for Kolmogorov width is given by a random choice (see e.g. [11]). Having 
a constructive alternative may be of some theoretical interest.

We are interested in how well the space Vn approximates the elements of F and for this purpose we 
compare its performance with the best possible performance which is given by the Kolmogorov width 
dn(F ; X) of F defined for n = 0, 1, 2, . . . by

dn := dn(F) := dn(F ;X) := inf
Y

sup
f∈F

dist(f, Y )X , (4)

where the infimum is taken over all n dimensional subspaces Y of X. Note that if F ⊂ X ⊂ Y it may happen 
that dn(F ; Y ) < dn(F ; X). We refer the reader to [11] for a general discussion of Kolmogorov widths.

Of course, if (σn)n≥0 decays at a rate comparable to (dn)n≥0, this would mean that the greedy selection 
provides essentially the best possible accuracy attainable by n-dimensional subspaces. Various comparisons 
have been given between σn and dn. A first result in this direction, in the case that X is a Hilbert space H, 
was given in [3] and improved in [2] where it was proved that

σn(F ;H) ≤ 2n+13−1/2dn(F ;H). (5)

While this is an interesting comparison, it is only useful if dn(F)H decays to zero faster than 2−n. Other 
estimates of this type were given in [2] in the Hilbert space setting and in [4] for general Banach spaces. It 
was shown in [2] that if dn(F ; H) ≤ Cn−α, n = 1, 2, . . . , then

σn(F ;H) ≤ C ′
αn

−α. (6)

It was shown in [4] that if dn(F ; X) ≤ Cn−α, n = 1, 2, . . . , then for any ε > 0

σn(F ;X) ≤ C(α, ε)n−α+ 1
2+ε. (7)

A related results are known for sub-exponential decay, dn(F) ≤ Ce−cnα .
The main aim of this paper is to explain the gap between (6) and (7) and provide an intermediate

estimate for X = Lp. This is done in Theorem 2.3 and Corollary 2.5 below. We show

Corollary 2.5. Let F be a compact subset of the unit ball of an Lp space 1 ≤ p ≤ ∞. If dn(F ; Lp) ≤ C0n
−α

for some α > μ =: | 1p − 1
2 | then

σn(F ;Lp) ≤ C

(
ln(n + 2)

n

)α

nμ.

In this paper we will use a standard Banach space notation as explained for example in [17,1]. Let us 
make precise the notation dist already used above; for two subsets A, B of a Banach space X we denote

dist(A,B) = dist(A,B)‖·‖ = sup
(

inf ‖a− b‖X
)
. (8)
a∈A b∈B
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2. Estimates for Lp-spaces

In this section we prove Theorem 2.3 which is our main technical result. The main tool, the Hadamard 
inequality, is the same as in [4] but the whole argument is quite involved.

General Banach spaces. Let us recall some well known notions from the Banach space theory, for details 
see e.g. [17,1]. For two Banach spaces X and Y we consider their Banach–Mazur distance:

d(X,Y ) = inf
{
‖T‖ ·

∥∥T−1∥∥ : T : X → Y is a 1–1 and onto linear map
}

(9)

if the spaces are isomorphic and d(X, Y ) = ∞ for non-isomorphic spaces. The name ‘distance’ is somewhat 
misleading (but very well established in tradition) since for Banach spaces X, Y , Z we have d(X, Y ) ≤
d(X, Z)d(Z, Y ) so actually log d(·,·) satisfies the triangle inequality.

For any pair of finite dimensional isomorphic (i.e. of the same dimension) Banach spaces, by compactness 
there exists T : X → Y such that d(X, Y ) = ‖T‖ · ‖T−1‖. We can additionally assume that ‖T−1‖ = 1. 
Using such an operator we can define a new norm ‖ · ‖n on X by ‖x‖n = ‖Tx‖Y . Clearly it is a norm and 
T is an isometry between (X, ‖ · ‖n) and (Y, ‖ · ‖Y ). Also

‖x‖X ≤ ‖x‖n ≤ d(X,Y )‖x‖X (10)

because ‖x‖X = ‖T−1Tx‖X ≤ ‖Tx‖Y = ‖x‖n ≤ ‖T‖‖x‖X = d(X, Y )‖x‖X .
We will need also the notion of a quotient space. Let X be a Banach space and F ⊂ X its closed subspace. 

For x ∈ X its coset is

[x]F =: {x + F} =: {y ∈ X : y = x + f for some f ∈ F}.

Two cosets are either disjoint or equal. One can check that [x]F = [y]F if and only if x − y ∈ F . The set of 
all cosets with natural operations, i.e. λ[x]F + μ[y]F = [λx + μy]F , is a linear space denoted as X/F . The 
norm on X induces a natural norm on X/F given by

∥∥[x]F
∥∥
∼ =: inf

{
‖z‖ : z ∈ [x]F

}
= inf

f∈F
‖x− f‖.

In our situation (X/F, ‖ · ‖∼) is a Banach space which is called a quotient space. There is a natural map 
(quotient map) q : X → X/F defined as q(x) = [x]F .

For a fixed (infinite dimensional) Banach space X we introduce a sequence of numbers

γn(X) = sup
{
d
(
V, �n2

)
: V is an n-dimensional subspace of X

}
.

The sequence γn(X) is non-decreasing and γ1(X) = 1. Also if X1 ⊂ X is a closed subspace, then γn(X1) ≤
γn(X). It is known that for any n-dimensional space V we have d(V, �n2 ) ≤ √

n (see e.g. [17, III.B.9]) so for 
any Banach space X, γn(X) ≤ √

n for n = 1, 2, . . . and it is also known that for any Lp(μ) space, 1 ≤ p ≤ ∞, 
we have γn ≤ n| 12− 1

p | (see e.g. [17, III.B.9]) and the order is correct.
Let us define a related concept

γ̃n(X) = sup
{
γn(Z) : Z is a quotient space of X

}
. (11)

Clearly γn(X) ≤ γ̃n(X) ≤ √
n. In the future we will need the following fact which is an easy (and probably 

known to specialists) consequence of classical but highly non-trivial results in Banach space theory.

Theorem 2.1. There exists a constant Cp, 1 ≤ p ≤ ∞, such that for every subspace of Lp we have γ̃n(X) ≤
Cpn

| 12− 1
p |.
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Proof. If p = 1 or p = ∞ the general estimate gives γ̃n(X) ≤ √
n, i.e. we can take C1 = C∞ = 1. The case 

1 < p < ∞ is much more involved. We use the notion of type and cotype of Banach spaces. For definition 
and explanation we refer to [17] or [9]. It is known that any subspace of Lp has type min(2, p) and cotype 
max(2, p) (see [17, III.A.17]). Now let X be a subspace of Lp and let X/V be its quotient space. Then 
clearly X/V ⊂ Lp/V . By duality (Lp/V )∗ is a subspace of Lq with 1

p + 1
q = 1. This implies that (Lp/V )∗

has type r = min(2, q) and cotype s = max(2, q). Using duality between type and cotype (for explanation 
and references see [9, pp. 52–53]) we get that (Lp/V ) and so X/V has cotype r∗ with 1

r + 1
r∗ = 1 and 

type s∗ with 1
s + 1

s∗ = 1. Now from Proposition 1.4 [16] we infer that γ̃n(X) ≤ Cpn
1
s∗ − 1

r∗ . This gives the 
claim. �

We know that C1, C2, C∞ ≤ 1; it seems to be an open question if Cp ≤ 1 for other p’s.
Basic calculations are summarised in the following

Proposition 2.2. Let K be a subset of a Banach space X and let sup{‖f‖ : f ∈ K} = B. Let (σj)j=0 be given 
by the greedy algorithm applied to K. Then for each 0 < m < N we have

(
N∏
j=0

σj

) 1
N+1

≤
√

2γN+m+1(X )Bm
N dm(K;X )

N−m
N . (12)

Proof. If we run the greedy algorithm for the set K we get sequence f0, f1, . . . , fN . Let X = span{f0, f1,

. . . , fN}. For m < N + 1 let us fix an arbitrary number d > dm(K, X ) and a subspace Tm ⊂ X which gives 
dist(K, Tm) ≤ d. In particular ‖fj − gj‖ ≤ d for j = 0, 1, . . . , N and some gj ∈ Tm.

We take Y = span(X, Tm), it has dimension ≤ N +1 +m and X is a subspace of codimension ≤ m in Y . 
From (10) we infer that there exists a Euclidean norm ‖ · ‖e on Y such that ‖y‖ ≤ ‖y‖e ≤ A‖y‖ where 
A ≤ γdim Y (X ). Let Q be the orthogonal projection from Y onto X (in the norm ‖ · ‖e). We get

∥∥fj −Q(gj)
∥∥
e

=
∥∥Q(fj − gj)

∥∥
e
≤ ‖fj − gj‖e

We denote dimQ(Tm) = k; obviously k ≤ m.
First we fix a Gram–Schmidt orthogonalisation (φj)Nj=0 of f0, f1, . . . , fN in the norm ‖ ·‖e. Writing matrix 

[φj(fk)]Nj,k=0 we get a triangular matrix and on the diagonal we have

dist‖·‖e

(
fj , span(f0, . . . , fj−1)

)
≥ dist‖·‖

(
fj , span(f0, . . . , fj−1)

)
= σj

Now let us fix (xj)Nj=0, another orthonormal basis in X, such that span(xj)k−1
j=0 = Q(Tm). If we look at 

the vector [xj(fs)]Nj=0 we get

k−1∑
j=0

∣∣xj(fs)
∣∣2 ≤ ‖fs‖2

e (13)

and

N∑
j=k

∣∣xj(fs)
∣∣2 = dist‖·‖e

(
fs;Q(Tm)

)
. (14)

Let kj denote the j-th column of the matrix [xj(fs)]Nj,s=0. Using first the Hadamard inequality, second 
the arithmetic geometric mean inequality and next (13) and (14) we get
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(
det

[
xj(fs)

])2 ≤
k−1∏
j=0

‖kj‖2
e ·

N∏
j=k

‖kj‖2
e

≤
(

1
k

k−1∑
j=0

‖kj‖2
e

)k(
1

N + 1 − k

N∑
j=k

‖kj‖2
e

)N+1−k

=
(

1
k

k−1∑
j=0

N∑
s=0

∣∣xj(fs)
∣∣2)k(

1
N + 1 − k

N∑
j=k

N∑
s=0

∣∣xj(fs)
∣∣2)N+1−k

≤
(

1
k

N∑
s=0

‖fs‖2
e

)k

·
(

1
N + 1 − k

N∑
s=0

dist‖·‖e

(
fs, Q(Tm)

)2)N+1−k

≤
(
N + 1

k
NB2A2

)k(
N + 1

N + 1 − k
A2d2

)N+1−k

=
(
N + 1

k

)k(
N + 1

N + 1 − k

)N+1−k

B2kA2(N+1)d2(N+1−k)

Note that |det[xj(fs)]| = |det[φj(fs)]| =
∏N

j=0 |φj(fj)| ≥
∏N

j=0 σj so

(
N∏
j=0

σj

)2

≤
(
N + 1

k

)k(
N + 1

N + 1 − k

)N+1−k

B2kA2(N+1)d2(N+1−k).

Since x−x(1 − x)x−1 ≤ 2 for x ∈ [0, 1]

(
N∏
j=0

σj

) 1
N+1

≤ A
√

2Bk/(N+1)d(N+1−k)/(N+1) = A
√

2d
(
B

d

)k/(N+1)

.

Since d is arbitrary number > dm(K, X ) and k ≤ m we get (12). �
Passage to the quotient space. Suppose we have a set F ⊂ X and we run a greedy algorithm to get 

f0, f1, . . . , fN , fN+1, . . . . We fix N and put F = span{f0, f1, . . . , fN−1} and consider X̃ = X/F with the 
quotient norm which we denote as ‖ · ‖∼. We put F̃ = q(F) ⊂ X̃ where q is the quotient map. For s ≥ 0 let 
us define f̃s = q(fN+s). Then for s = 0, 1, 2, . . . we have (we mean span{f̃j}j<0 = {0})

σN+s(F ;X ) = dist
(
fN+s, span(fj)j<N+s

)
X

= inf
{
‖fN+s − g‖ : g ∈ span(fj)j<N+s

}
= inf

g∈span(fj)N+s−1
j=N

inf
f∈F

‖fN+s − g − f‖

= inf
g∈span(fj)N+s−1

j=N

∥∥q(fN+s − g)
∥∥
∼

= inf
g̃∈span(f̃j)s=1

j=0

‖f̃s − g̃‖∼

= dist
(
f̃s, span(f̃j)s−1

j=0
)
X .

Also σN+s(F ; X ) = supf∈F dist(f, span(fj)j<N+s)X so using the above reasoning we get
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σN+s(F ;X ) = sup
f∈F

dist
(
q(f), span(f̃j)s−1

j=0
)
X̃

= dist
(
F̃ , span(f̃j)s−1

j=0
)
X̃ .

This means that there exists a realisation of a greedy algorithm for F̃ in X̃ which produces vectors 
f̃0, f̃1, . . . and numbers σ̃0, ̃σ1, . . . such that σ̃s = σN+s. Also for each m we have

d(N+m)(F ,X ) ≤ dm(F̃ , X̃ ) ≤ dm(F ,X ). (15)

Thus applying Proposition 2.2 we get for m < K

(
N+K∏
j=N

σj(F ;X )
) 1

K+1

≤
√

2γ̃K+m+1(X )σN (F ;X )m/Kdm(F ;X )
K−m

K (16)

which implies

σN+K(F ;X ) ≤
√

2γ̃K+m+1(X )σN (F ;X )δdm(F ;X )1−δ (17)

where δ = m/K. In particular (take K = N > m > 0 so δ = m/N and use that γ̃ is an increasing sequence)

σ2N (F ;X ) ≤
√

2γ̃2N (X )σN (F ;X )δdm(F ;X )1−δ (18)

Now let us prove our general estimate.

Theorem 2.3. Suppose that we apply the greedy algorithm to the compact set F contained in the unit ball of 
a Banach space X such that γ̃n(X ) ≤ Cnμ for some C > 0 and 0 < μ ≤ 1

2 .

1. If for α > μ we have dn(F ; X ) ≤ C0n
−α then

σn(F ;X ) ≤ C1

(
ln(n + 2)

n

)α

nμ (19)

for some constant C1 = C1(C, C0, μ, α).
2. If for some α > 0 we have dn(F ; X ) ≤ C0e

−cnα then

σn ≤ C̃0n
μe−c1n

α

(20)

for some C̃0 ≤ 3μ
√

2C max(1, C0) and c1 = c max0<δ=m
n <1(1 − δ)δα.

Proof. (1) Let s > 6 be an integer such that the sequence (n−α+μ lnα(n + 2))n≥s is decreasing. Suppose 
that our theorem does not hold for C1 = D such that D ≥ max1≤j≤s j

α−μ ln−α(j + 2). Let M be the first 
integer such that

σM > DM−α+μ lnα(M + 2). (21)

Since σn ≤ 1 we get M > s ≥ 6. Either M = 2K or M = 2K + 1 and K ≥ 3. Using monotonicity of our 
sequences and (18) we get

DM−α+μ lnα(M + 2) < σM ≤ σ2K ≤
√

2C(2K)μσδ
Kd1−δ

m (22)

for any 0 < m < K and δ = m/K. Since 2K < M our assumptions give
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DM−α+μ lnα(M + 2) <
√

2CMμ
[
DK−α+μ lnα(K + 2)

]δ(
C0m

−α
)1−δ

so using K ≤ M ≤ 3K we get

C ′D1−δ < Kδμ
(
ln(K + 2)

)−α(1−δ)
δ−α(1−δ) (23)

where C ′ > (CC1−δ
0 3α

√
2 )−1. Now we fix δ such that 1

2 ln K ≤ δ ≤ 1
ln K (since K ≥ 3 such a choice is 

possible) and we get

C ′D1−δ ≤
(
K1/ ln K

)μ( 2 lnK

ln(K + 2)

)α(1−δ)

(24)

≤ eμ2α. (25)

This gives an upper estimate for D which proves (1). The proof of (2) follows the arguments from [2,4] and 
is sketched here for completeness. We use (12) to get

σn ≤
√

2C3μnμ inf
0<δ=m

n <1
C1−δ

0 e−c(1−δ)δαnα ≤ C̃0n
μe−c1n

α

. �

Remark 2.4. Standard calculation gives that max0<t<1(1 − t)tα = tt

(1+t)1+t is attained for t = α
1+α so for 

big n it suffices to take c1 slightly bigger than c1α
α

(1+α)1+α .

Putting together Theorems 2.3 and 2.1 we get

Corollary 2.5. Let F be a compact subset of the unit ball of an Lp space 1 ≤ p ≤ ∞. If dn(F ; Lp) ≤ C0n
−α

for some α > μ =: | 1p − 1
2 | then

σn(F ;X ) ≤ C

(
ln(n + 2)

n

)α

nμ. (26)

Remark 2.6. Let us recall that every separable Banach space X satisfies γ̃n(X ) ≤ √
n so Theorem 2.3 with 

μ = 1
2 improves Corollary 4.2(ii) from [4]. Our estimate (19) is somewhat better than in [4].

Remark 2.7. In the case when γ̃n is bounded the logarithm in (19) is not needed. We follow the above proof 
with (21) replaced by σM > DM−α and (since μ = 0) instead of (23) we get C ′D1−δ < δ−α(1−δ). Now the 
choice δ ∼ 1

2 does the job. So for p = 2 there is no logarithm in (26).
Let us note that γn(X) bounded implies that X is isomorphic to a Hilbert space (see [10]). This implies 

that the greedy algorithm in such a space can be interpreted as a realisation of a weak greedy algorithm 
(with appropriate weakness constant) in a Hilbert space. Thus this remark can also be seen as a corollary 
of [2, Theorem 3.1].

Next we present an example which shows that the estimate (26) is optimal up to a logarithmic factor. It 
is a natural modification of an example given in [4].

Let us take F =: {n−αen}∞n=1 ⊂ �q with 2 < q < ∞ and α > 1
q . Clearly σn(F)�q = (n + 1)−α. In 

order to estimate the Kolmogorov widths of F we will use the following classical result (see (7.17) from [11, 
Chap. 14])

dn
(
BN

1 ; �Nq
)
≤ C(q)N1/qn−1/2 (27)

where BN
1 is the unit ball from �N1 .
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Let us fix an integer N and ε = 2−αN . For N > k > α(1
2 + α − 1

q )−1 =: μN we consider vectors 
Fk =: {n−αen}2k+1

n=2k+1. From (27) we see that there exists a subspace Fk ⊂ span{en}2k+1

n=2k+1 of dimension nk

such that dist(Fk, Fk) ≤ ε and

nk ≤ C(q)222Nα22k( 1
q−α) + 1. (28)

We define the space

V = span
({

en : n ≤ 2μN
}
∪

⋃
N>k>μN

Fk

)
.

We have dist(F , V ) ≤ ε and dimV ≤ 2μN +
∑

N>k>μN nk. Using (28) we obtain

∑
N>k>μN

nk ≤ N + C(q)22Nα
∑

N>k>μN

22k( 1
q−α)

≤ C(q, α)22Nα22μN( 1
q−α) = C(q, α)2μN

so dimV ≤ C ′(q, α)2μN =: m(N) =: m. Thus dm(N)(F ; �q) ≤ ε. On the other hand

σm(F ; �q) = (m + 1)−α ≥ dmε−1(m + 1)−α ≥ dmC ′′2Nα2−μNα

= C ′′dm2( 1
2− 1

q )μN ≥ C ′′m
1
2− 1

q dm.

3. Direct estimates

Let us note that the approximating subspace given by the greedy algorithm is always spanned by elements 
from F while there is no such requirement for subspaces used to calculate Kolmogorov widths. Thus it may 
seem more fair to compare σn with the following quantities:

d̄n(F ;X) = inf
f1,...,fn∈F

{
dist(F , V ) : V = span{f1, . . . , fn}

}
. (29)

Examples that d̄n > dn are known, cf. [14, Chap. II.1] even for convex, centrally symmetric sets.

Theorem 3.1. The following hold:

(i) For any compact set F in any Banach space X and any n ≥ 0, we have d̄n(F) ≤ (n + 1)dn(F).
(ii) Given any n > 0 and ε > 0, there is a set F such that d̄n(F) ≥ (n − 1 − ε)dn(F).

For X being the Hilbert space this theorem was proved in [2]. We find it somewhat surprising that exactly 
the same result holds for general Banach spaces.

Proof of (i). Assume first that X is finite dimensional and that dn(F ; X) < dn−1(F ; X). Let Y ⊂ X be 
an n-dimensional optimal Kolmogorov subspace, i.e. dist(F , Y ) = dn(F), which exists because X is finite 
dimensional. If dn = 0 then F ⊂ Y so d̄n(F) = 0. Now assume that dn(F) > 0 and fix a basis (λ1, . . . , λn)
in Y ∗. For an element f ∈ X let P (f) denote an element from Y which realises infy∈Y ‖f − y‖. Such an 
element always exists, however it may be not unique. Moreover there may not exist a continuous selection 
of P (f), see [15, C.6.3]. For arbitrary system {f1, . . . , fn} ⊂ F and arbitrary choice of P (fj)’s we consider 
the determinant



P. Wojtaszczyk / J. Math. Anal. Appl. 424 (2015) 685–695 693
D
(
P (f1), . . . , P (fn)

)
= det

[
λiP (fj)

]n
i,j=1

and put β = supD(P (f1), . . . , P (fn)) where the sup is taken over all choices of fj ’s and P . Since
∣∣λj

(
P (fs)

)∣∣ ≤ ‖λj‖ · ‖fs‖ ≤ max
1≤j≤n

‖λj‖ sup
f∈F

‖f‖

we infer that β < ∞.
Now we show that if dn < dn−1 then β > 0. Note that β = 0 means that for each system {f1, . . . , fn} ⊂ F

and every choice of P (fj)’s vectors P (f1), . . . , P (fn) are linearly dependent. Let k < n be the biggest 
dimension of the space they span. Let us fix vectors f1, . . . , fk ∈ F such that P (f1), . . . , P (fk) span a space 
V ⊂ Y of dimension k. Now let us take arbitrary f ∈ F and arbitrary P (f). Vectors P (f1), . . . , P (fk), P (f)
span V so P (f) ∈ V . This implies that dk ≤ dist(F ; V ) = dn.

We fix elements f1, . . . , fn ∈ F and their best approximations P (f1), . . . , P (fn) such that D(P (f1), . . . ,
P (fn)) ≥ β(1 − η). Clearly for any f ∈ F and its best approximation P (f) ∈ Y and any i = 1, 2, . . . , n we 
have

∣∣β−1D
(
P (f1), . . . , P (fi−1), P (f), P (fi+1), . . . , P (fn)

)∣∣ ≤ 1.

Let f ∈ F be an element where the distance from F to Y is achieved. Since β > 0 elements P (f1), . . . , P (fn)
form a basis in Y . We write Pf =

∑n
k=1 αkP (fk). Note that for i = 1, . . . , n

D
(
P (f1), . . . , P (fi−1), P (f), P (fi+1), . . . , P (fn)

)
=

n∑
k=1

(−1)k+iD
(
P (f1), . . . , P (fi−1), P (fk), P (fi+1), . . . , P (fn)

)
= (−1)2iαiD

(
P (f1), . . . , P (fn)

)
so |αi| ≤ (1 − η)−1. This gives

d̄n(F) ≤ dist
(
F , span(fi)ni=1

)
≤

∥∥∥∥∥f −
n∑

i=1
αifi

∥∥∥∥∥
≤

∥∥f − P (f)
∥∥ +

∥∥∥∥∥
n∑

i=1
αi

[
P (fi) − fi

]∥∥∥∥∥ ≤ (1 − η)−1(n + 1) dist(F , Y )

≤ n + 1
1 − η

dn(F).

Since η is an arbitrary positive number we get (i) under our additional assumptions. Now if X is infinite 
dimensional and F ⊂ X let us fix ε > 0. Let us take an n-dimensional subspace V1 ⊂ X such that 
dist(F ; V1) ≤ (1 +ε)dn(F ; X), a n-dimensional subspace V2 spanned by elements of F such that dist(F ; V2) ≤
(1 + ε)d̄n(F ; X) and a finite ε-net Fε ⊂ F which contains a basis of V2. Let X̂ = span{Fε ∪ V1 ∪ V2}. Now 
let k ≤ n be the biggest integer such that dk(Fε; X̂) = dn(Fε; X̂). Now we have

d̄k(Fε; X̂) ≤ (k + 1)dk(Fε; X̂)

= (k + 1) inf
{
dist(Fε, V ) : V ⊂ X̂, dimV = k

}
≤ (k + 1)

(
inf

{
dist(F , V ) : V ⊂ X̂, dimV = k

}
+ ε

)
≤ (k + 1)

(
dist(F , V1) + ε

)
≤ (n + 1)

(
(1 + ε)dn(F ;X) + ε

)
.
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On the other hand

d̄k(Fε; X̂) = inf
{
dist(Fε, V ) : V spanned by k elements of Fε

}
≥ inf

{
dist(Fε, V ) : V spanned by k elements of F

}
≥ d̄k(F ;X) − ε ≥ d̄n(F ;X) − ε.

Since ε is arbitrary the above estimates give us (i).
Examples proving (ii) were constructed, even for X being a Hilbert space, in [2, Theorem 4.1]. �
It is worth noting that for convex symmetric sets the situation is somewhat different. Namely we have 

the following

Proposition 3.2. Let F be a convex, centrally symmetric subset of a Banach space X . Then

1. if X is arbitrary Banach space then we have d̄n(F ; X ) ≤ (
√
n + 1)dn(F ; X ),

2. if X = Lp for some 1 < p < ∞ then we have d̄n(F ; X ) ≤ (n| 1p− 1
2 | + 1)dn(F ; X ),

3. if X is a Hilbert space then we have d̄n(F ; X ) = dn(F ; X ).

Proof. For a given n and ε > 0 we fix a subspace X ⊂ X of dimension n such that dist(F , X) ≤ (1 +
ε)dn(F ; X ). Let F be a closed span of F and let F1 be a closed linear span of F ∪ X. Let us take a 
projection P from F1 onto F and let X̃ = P (X). Since F is convex and symmetric set 

⋃
t>0 tF is a linear 

subspace dense in F . This implies that there exists a subspace X̂ ⊂ F such that dim X̂ = dim X̃ which is 
spanned by elements from F and dist(X̂, X̃) ≤ ε. Thus dist(F , X̂) ≤ ε +dist(F , X̃) ≤ ε +‖P‖(1 +ε)dn(F , X ). 
It is clear that for Hilbert space we can have ‖P‖ = 1 and the estimates for other cases are also known 
(see [17, III.B.11]). �

Now we will present a general direct comparison which is a generalisation of (5) to Banach spaces. Clearly 
it is only useful for dn’s decaying essentially faster than exponential, but then it may give better results 
than Proposition 2.2.

Theorem 3.3. For a compact set F ⊂ Lp and n = 0, 1, 2, . . . we have

σn(F ;Lp) ≤ Cn| 12− 1
p |2ndn(F ;Lp).

Proof. Applying the greedy algorithm to F we get vectors f0, f1, . . . , fn. Let Y ⊂ Lp be a subspace of 
dimension n which almost attains dn(F), i.e. dist(F , Y ) ≤ (1 + ε)dn(F). There is a projection P from Lp

onto X = span{f0, . . . , fn} of norm ≤ n| 12− 1
p |, see e.g. [17, Theorem III.B.10]. Let Ỹ = P (Y ) ⊂ X. We will 

assume that dim Ỹ = n; we can enlarge P (Y ) if needed. We have

max
j

dist(fj , Ỹ ) = max
j

inf
y∈Y

‖fj − Py‖ ≤ ‖P‖max
j

inf
y∈Y

‖fj − y‖

≤ (1 + ε)‖P‖dn(F).

We fix λ0, . . . , λn functionals on X such that ‖λj‖ = 1, λj(fs) = 0 for s < j and λj(fj) = dist(fj , Vj); 
such functionals exist by the Hahn–Banach Theorem (see e.g. [7, Chap. IV, Corollary 14.13]). Note that for 
s > j we have |λj(fs)| ≤ dist(fs, Vj) ≤ σj . Let (ej)nj=0 be vectors in X biorthogonal to (λj)nj=0. Let φ be a 
functional on X, ‖φ‖ = 1 and ker φ = Ỹ . We have

σn = dist(fn, Vj) = λn(fn)
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and for j = 0, 1, . . . , n
∣∣σnφ(ej)

∣∣ ≤ σj

∣∣φ(ej)
∣∣ =

∣∣φ(σjej)
∣∣.

We write σjej =
∑n

s=0 γ
j
sfs. For each k = 0, 1, . . . , n we have

σjδk,j = σjλk(ej) =
n∑

s=0
λk(fs).

Let us consider the following matrices; Σ which is diagonal with diagonal elements σ0, σ1, . . . , σn, Γ = [γj
s ]

and Λ = [λk(fs)]. The above relations can be written as Σ = ΓΛ, so Γ = ΣΛ−1. Since Λ is lower triangular 
with diagonal elements σj and elements in the j-th column at most σj in absolute value we infer that ΛΣ−1

is a lower triangular matrix with diagonal elements 1 and elements in the j-th column at most 1 in absolute 
value. So Γ is lower triangular, i.e. σjej =

∑n
s=j γ

j
sfs, and calculating the inverse by back substitution we 

get |λj
s| ≤ 2s−j . This gives

∣∣φ(σjej)
∣∣ ≤ n∑

s=j

∣∣γj
s

∣∣∣∣φ(fs)
∣∣ ≤ 2j+1 dist(F , Ỹ ) ≤ 2j+1‖P‖(1 + ε)dn(F).

Since φ =
∑

j φ(ej)λj we get 1 = ‖φ‖ ≤
∑

j |φ(ej)| so

σn ≤ σn

n∑
j=0

∣∣φ(ej)
∣∣ ≤ n∑

j=0
2j+1‖P‖(1 + ε)dn(F)

≤ 2n+2n| 12− 1
p |(1 + ε)dn(F).

Since ε > 0 is arbitrary the proof is completed. �
References

[1] F. Albiac, N.J. Kalton, Topics in Banach Space Theory, Grad. Texts in Math., vol. 233, Springer-Verlag, 2006.
[2] P. Binev, A. Cohen, W. Dahmen, R. DeVore, G. Petrova, P. Wojtaszczyk, Convergence rates for greedy algorithms in 

reduced basis method, SIAM J. Math. Anal. 43 (3) (2011) 1457–1473.
[3] A. Buffa, Y. Maday, A.T. Patera, C. Prud’homme, G. Turinici, A priori convergence of the greedy algorithm for the 

parametrized reduced basis, Modél. Math. Anal. Numér. 46 (2012) 595–603.
[4] R. DeVore, G. Petrova, P. Wojtaszczyk, Greedy algorithms for reduced bases in Banach spaces, Constr. Approx. 37 (3) 

(2013) 455–466.
[5] B. Haasdonk, J. Salomon, B. Wohlmuth, A reduced basis method for parametrized variational inequalities, SIAM J. 

Numer. Anal. 50 (2) (2012) 2656–2676.
[6] H. Herrero, Y. Maday, F. Pla, RB (reduced basis) for RB (Rayleigh–Bénard), Comput. Methods Appl. Mech. Engrg. 

261–262 (2013) 132–141.
[7] E. Hewitt, K. Stromberg, Real and Abstract Analysis, Springer, Berlin, 1969.
[8] M.A. Iwen, F. Krahmer, Fast subspace approximation via greedy least square, arXiv:1312.1413v1 [cs.CG].
[9] W.B. Johnson, J. Lindenstrauss, Basic concepts in the geometry of Banach spaces, in: W.B. Johnson, J. Lindenstrauss 

(Eds.), Handbook of the Geometry of Banach Spaces, vol. I, Elsevier, Amsterdam, 2001, pp. 1–84.
[10] J.T. Joichi, Normed linear spaces equivalent to inner product spaces, Proc. Amer. Math. Soc. 17 (2) (1966) 423–426.
[11] G.G. Lorentz, M. Golitschek, Y. Makovoz, Constructive Approximation, Advanced Problems, Grundlehren Math. Wiss., 

vol. 304, Springer-Verlag, Berlin, 1996.
[12] Y. Maday, A.T. Patera, G. Turinici, A priori convergence theory for reduced-basis approximations of single-parametric 

elliptic partial differential equations, J. Sci. Comput. 17 (2002) 437–446.
[13] Y. Maday, A.T. Patera, G. Turinici, Global a priori convergence theory for reduced-basis approximations of single-

parameter symmetric coercive elliptic partial differential equations, C. R. Math. Acad. Sci. Paris 335 (2002) 2289–2294.
[14] A. Pincus, n-Widths in Approximation Theory, Springer-Verlag, 1985.
[15] D. Repovš, P.V. Semenov, Continuous Selections of Multivalued Mappings, Kluwer Academic Publishers, Dordrecht, 1998.
[16] N. Tomczak-Jaegermann, Banach–Mazur Distances and Finite-Dimensional Operator Ideals, Pitman Monogr. Surveys 

Pure Appl. Math., vol. 38, 1989.
[17] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Stud. Adv. Math., vol. 25, Cambridge University Press, Cam-

bridge, 1991.

http://refhub.elsevier.com/S0022-247X(14)01096-8/bib414Bs1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib424344445057s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib424344445057s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib424D505054s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib424D505054s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib445057s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib445057s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib485357s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib485357s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib484D50s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib484D50s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4853s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib494Bs1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4A4Cs1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4A4Cs1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4A6F69s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4C474Ds1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4C474Ds1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4D5054s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4D5054s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4D505431s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4D505431s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib50696Es1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib526570s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4E544As1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib4E544As1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib5057s1
http://refhub.elsevier.com/S0022-247X(14)01096-8/bib5057s1

	On greedy algorithm approximating Kolmogorov widths in Banach spaces
	1 Introduction
	2 Estimates for Lp-spaces
	3 Direct estimates
	References


