期刊论文详细信息
JOURNAL OF APPROXIMATION THEORY 卷:240
An upper bound on the Kolmogorov widths of a certain family of integral operators
Article
Lewis, Duaine1  Sing, Bernd1 
[1] Univ West Indies, Dept Math, Cave Hill,POB 64,BB11000, Bridgetown, St Michael, Barbados
关键词: Kolmogorov widths;    Integral operator;    Entropy numbers;   
DOI  :  10.1016/j.jat.2018.09.012
来源: Elsevier
PDF
【 摘 要 】

We consider the family of integral operators (K-alpha f)(x) from L-P [0, 1] to L-q [0, 1] given by (K-alpha f)(x) = integral(1)(0)(1- xy) (alpha-1) f (y) dy, 0 < alpha < 1. The main objective is to find upper bounds for the Kolmogorov widths of these operators; these are then used to derive upper bounds for their entropy numbers. We find upper bounds for the nth Kolmogorov widths in question that decrease faster than exp(-kappa root n), and for the nth entropy numbers that decrease faster than exp(-c (3)root n), for some positive constants kappa and c. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jat_2018_09_012.pdf 616KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次