JOURNAL OF ALGEBRA | 卷:495 |
Determinant formula for parabolic Verma modules of Lie superalgebras | |
Article | |
Oshima, Yoshiki1  Yamazaki, Masahito2,3  | |
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Suita, Osaka 5650871, Japan | |
[2] Univ Tokyo, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan | |
[3] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA | |
关键词: Lie superalgebra; Representation theory; Verma modules; Determinant formula; | |
DOI : 10.1016/j.jalgebra.2017.11.011 | |
来源: Elsevier | |
【 摘 要 】
We prove a determinant formula for a parabolic Verma module of a contragredient finite-dimensional Lie superalgebra, previously conjectured by the second author. Our determinant formula generalizes the previous results of Jantzen for a parabolic Verma module of a (non-super) Lie algebra, and of Kac concerning a (non-parabolic) Verma module for a Lie superalgebra. The resulting formula is expected to have a variety of applications in the study of higher-dimensional supersymmetric conformal field theories. We also discuss irreducibility criteria for the Verma module. (C) 2017 Elsevier Inc. All rights reserved.
【 授权许可】
Free
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
10_1016_j_jalgebra_2017_11_011.pdf | 420KB | download |