期刊论文详细信息
JOURNAL OF ALGEBRA 卷:495
Determinant formula for parabolic Verma modules of Lie superalgebras
Article
Oshima, Yoshiki1  Yamazaki, Masahito2,3 
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Suita, Osaka 5650871, Japan
[2] Univ Tokyo, Kavli IPMU WPI, Kashiwa, Chiba 2778583, Japan
[3] Inst Adv Study, Sch Nat Sci, Princeton, NJ 08540 USA
关键词: Lie superalgebra;    Representation theory;    Verma modules;    Determinant formula;   
DOI  :  10.1016/j.jalgebra.2017.11.011
来源: Elsevier
PDF
【 摘 要 】

We prove a determinant formula for a parabolic Verma module of a contragredient finite-dimensional Lie superalgebra, previously conjectured by the second author. Our determinant formula generalizes the previous results of Jantzen for a parabolic Verma module of a (non-super) Lie algebra, and of Kac concerning a (non-parabolic) Verma module for a Lie superalgebra. The resulting formula is expected to have a variety of applications in the study of higher-dimensional supersymmetric conformal field theories. We also discuss irreducibility criteria for the Verma module. (C) 2017 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2017_11_011.pdf 420KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次