期刊论文详细信息
Symmetry Integrability and Geometry-Methods and Applications
Representation Theory of Quantized Enveloping Algebras with Interpolating Real Structure
article
Kenny De Commer1 
[1] Department of Mathematics, University of Cergy-Pontoise
关键词: compact quantum homogeneous spaces;    quantized universal enveloping algebras;    Hopf–Galois theory;    Verma modules;   
DOI  :  10.3842/SIGMA.2013.081
来源: National Academy of Science of Ukraine
PDF
【 摘 要 】

Let $\mathfrak{g}$ be a compact simple Lie algebra. We modify the quantized enveloping $^*$-algebra associated to $\mathfrak{g}$ by a real-valued character on the positive part of the root lattice. We study the ensuing Verma module theory, and the associated quotients of these modified quantized enveloping $^*$-algebras. Restricting to the locally finite part by means of a natural adjoint action, we obtain in particular examples of quantum homogeneous spaces in the operator algebraic setting.

【 授权许可】

Unknown   

【 预 览 】
附件列表
Files Size Format View
RO202106300001399ZK.pdf 516KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次