期刊论文详细信息
JOURNAL OF ALGEBRA 卷:517
Irreducible modules for equivariant map superalgebras and their extensions
Article
Calixto, Lucas1  Macedo, Tiago2,3 
[1] Univ Fed Minas Gerais, Dept Math, BR-30123970 Belo Horizonte, MG, Brazil
[2] Univ Ottawa, Dept Math & Stat, Ottawa, ON K1N 6N5, Canada
[3] Univ Fed Sao Paulo, Dept Sci & Technol, BR-12247014 Sao Paulo, Brazil
关键词: Lie superalgebra;    Representation theory;    Homological methods;   
DOI  :  10.1016/j.jalgebra.2018.10.001
来源: Elsevier
PDF
【 摘 要 】

Let Gamma be a group acting on a scheme X and on a Lie superalgebra g, both defined over an algebraically closed field of characteristic zero k. The corresponding equivariant map superalgebra M(g, X)(Gamma) is the Lie superalgebra of Gamma-equivariant regular maps from X to g. In this paper we complete the classification of finite-dimensional irreducible M(g, X)(Gamma)-modules when g is a finite-dimensional simple Lie superalgebra, X is of finite type and Gamma is a finite abelian group acting freely on the rational points of X, by classifying these M(g, X)(Gamma)-modules in the case where g is a periplectic Lie superalgebra. We also describe extensions between irreducible modules in terms of homomorphisms and extensions between modules for certain finite-dimensional Lie superalgebras. As an application, one obtains the block decomposition of the category of finite-dimensional M(g, X)(Gamma)-modules in terms of blocks and spectral characters of finite-dimensional Lie superalgebras. (C) 2018 Elsevier Inc. All rights reserved.

【 授权许可】

Free   

【 预 览 】
附件列表
Files Size Format View
10_1016_j_jalgebra_2018_10_001.pdf 612KB PDF download
  文献评价指标  
  下载次数:0次 浏览次数:0次