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1. Introduction

Lie superalgebras have a wide range of applications in many areas of physics and 
mathematics, such as supersymmetry, string theory, conformal field theory and number 
theory. In the study of symmetries, for instance, while Lie algebras describe bosonic 
degrees of freedom, Lie superalgebras also allow fermonic degrees of freedom [32]. In 
number theory, affine Kac–Moody superalgebras and their representations can be used 
to study problems related to sums of squares and sums of triangular numbers [19]. For 
more examples, see for instance [9,10,14,30].

It is usually the case that the representation theory of Lie superalgebras is more 
complicated than that of their Lie algebra counterparts. For instance, the category of 
finite-dimensional modules for a finite-dimensional simple Lie algebra is always semisim-
ple, while the category of finite-dimensional modules for a finite-dimensional simple 
Lie superalgebra is not necessarily so. It is thus important to describe extensions be-
tween their irreducible modules. Despite being a subject of intense study since the birth 
of supersymmetry, these extensions are not known in general. And in contrast with 
extensions for Lie algebras, their study is often done case by case. See, for instance, 
[1,5,11,12,15,16,26,28,29] for some of these results.

The main goal of the current paper is to develop the representation theory of certain 
Lie superalgebras known as equivariant map superalgebras. Equivariant map superal-
gebras generalize, on the one hand, simple Lie superalgebras, and on the other hand, 
current and loop Lie algebras. They are constructed in the following way. Consider a 
scheme X, a Lie superalgebra g, both defined over an algebraically closed field of charac-
teristic zero k, and a group Γ that acts on X and g by automorphisms. The corresponding 
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equivariant map superalgebra M(X, g)Γ is the Lie superalgebra of Γ-equivariant regular 
maps from X to g. If one denotes by A the coordinate ring of X, then M(X, g)Γ can be 
identified with the Lie subsuperalgebra (g ⊗k A)Γ of g ⊗k A that consists of its Γ-fixed 
points under the diagonal action.

In the particular case where g is a Lie algebra, M(X, g)Γ is called equivariant map 
algebra. The representation theory of these Lie algebras has been a subject of intense 
research for the last thirty years (see, for instance, the survey [23]). One reason is that 
representations of M(k×, g)Γ, known as twisted loop algebras, and M(k, g)Γ, known as 
twisted current algebras, are closely related to those of affine Kac–Moody Lie algebras. 
In fact, when g is a finite-dimensional simple Lie algebra and Γ is the group of automor-
phisms of the Dynkin diagram of g, the twisted current algebra is a parabolic subalgebra 
of the affine Kac–Moody Lie algebra associated to g and Γ, and the twisted loop algebra 
is its centerless derived subalgebra (see [21, Section 13.1]).

Finite-dimensional irreducible representations of equivariant map algebras were clas-
sified by Neher, Savage and Senesi [25] in the case where g is a finite-dimensional Lie 
algebra and Γ is a finite group. Finite-dimensional simple Lie superalgebras over an 
algebraically closed field of characteristic zero and finite-dimensional irreducible repre-
sentations of the so-called basic classical Lie superalgebras were classified by Kac in 
[17] and [18]. In [27], Savage classified irreducible finite-dimensional representations of 
equivariant map superalgebras in the case where g is a basic classical Lie superalgebra 
(or sl(n, n), n ≥ 1, if Γ is trivial), X has a finitely-generated coordinate ring and Γ is a 
finite abelian group acting freely on the rational points of X. Moving beyond basic clas-
sical Lie superalgebras, the first author, Moura and Savage classified finite-dimensional 
irreducible representations of equivariant map queer Lie superalgebras in [7]. While in 
the basic classical setting those irreducible representations were isomorphic to tensor 
products of generalized evaluation representations, in the queer case they are irreducible 
products of evaluation representations (see Section 2.3 for details). In [2], Bagci extended 
this classification to equivariant map superalgebras where g is of Cartan type.

In the current paper, we complete the classification of finite-dimensional irreducible 
representations of equivariant map superalgebras by describing these modules for 
M(g, X)Γ when g = p(n), a periplectic Lie superalgebra, X has a finitely-generated 
coordinate ring, Γ is a finite abelian group acting on g and X, and such that the induced 
action of Γ on the rational points of X is free. In Theorem 3.9 we prove that, simi-
larly to the case where g is basic classical of type II, all irreducible finite-dimensional 
M(g, X)Γ-modules are evaluation modules. The technique used to prove this result is 
similar to the one used in [27]. Behind this technique are the facts that one can choose a 
Cartan subalgebra of p(n) that is purely even and abelian, that the root space decompo-
sition of p(n) with respect to such a subalgebra is relatively similar to that of the basic 
case, and that p(n)0̄ is a semisimple Lie algebra.

Equipped with a complete classification of irreducible finite-dimensional M(g, X)Γ-
modules, one can inquire about their extensions. This is the second problem that we 
address in the current paper. In Theorem 5.7 we describe extensions between finite-
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dimensional irreducible (g ⊗ A)Γ-modules in terms of homomorphisms and extensions 
between finite-dimensional indecomposable (irreducible, in some cases) modules for a 
finite-dimensional Lie superalgebra of the form g ⊗ A/mn, where m is a maximal ideal 
of A and n is a positive integer. The technique used here is similar to that used in [23]
and [4] for the nonsuper case. The main difference in this super setting is that one needs 
to describe the kernel of certain transgression maps, which we do in Section 4.

Using these formulas for extensions between finite-dimensional irreducible (g ⊗
A)Γ-modules, we are able to describe the block decomposition of the category of finite-
dimensional (g ⊗ A)Γ-modules in terms of blocks and spectral characters of certain 
finite-dimensional Lie superalgebras. This description extends results of Kodera [20], 
Neher and Savage [24].

Organization of the paper

In Section 2 we fix the notation and state some results that will be used throughout 
the paper. Most of the results in this section are known and we provide a source for 
their proofs. However, as far as we know, Proposition 2.5, Lemmas 2.10, 2.11, and Corol-
lary 2.12 have not appeared in the literature before, thus we provide complete proofs 
for these results. In Section 3 we describe the structure of periplectic Lie superalgebras, 
construct and classify the finite-dimensional irreducible M(g, X)Γ-modules when g is of 
periplectic type, X has a finitely-generated coordinate ring, Γ is a finite abelian group 
acting on g and X, and such that the action of Γ on the rational points of X is free (see 
Section 3.3). In Section 4 we detail the construction of Lyndon–Hochschild–Serre spec-
tral sequences and describe the kernel of certain transgression maps that are relevant to 
the computation of extensions between finite-dimensional irreducible M(g, X)Γ-modules 
(see Proposition 4.2). Using the results of Sections 3 and 4, in Section 5 we de-
velop a general technique to describe p-extensions between finite-dimensional irreducible 
M(g, X)Γ-modules, and describe 1-extensions between these modules in terms of homo-
morphisms and extensions between finite-dimensional indecomposable (irreducible, in 
some cases) modules for a finite-dimensional Lie superalgebra of the form g ⊗ A/mn, 
where m is a maximal ideal of A and n is a positive integer (see Theorem 5.7 for the 
main result of this section). We finish the paper with some examples and applications.
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2. Notation and preliminaries

2.1. Notation

Let k denote an algebraically closed field of characteristic zero, Z2 denote the finite 
field with two elements {0̄, ̄1}, and Z>0 denote the set of positive integers. All vector 
spaces, algebras, and tensor products will be considered over the field k (unless otherwise 
specified). A vector space V is said to be a super space if it is Z2-graded; that is, there 
exist subspaces V0̄, V1̄ ⊆ V such that V = V0̄ ⊕ V1̄. We denote by | · | the degree of a 
homogeneous element in a super space V ; that is, |v| = z for all v ∈ Vz and z ∈ Z2.

2.2. Finite-dimensional Lie superalgebras

In this subsection we follow [13,22].
A Lie superalgebra is a Z2-graded vector space g = g0̄ ⊕ g1̄ with a Z2-graded linear 

transformation [·, ·] : g ⊗ g → g that satisfies Z2-graded versions of anticommutativity 
and Jacobi identity. Given two Lie superalgebras a = a0̄ ⊕ a1̄ and b = b0̄ ⊕ b1̄, every 
homomorphism of Lie superalgebras φ : a → b is assumed to be even; that is, φ(a0̄) ⊆ b0̄
and φ(a1̄) ⊆ b1̄. Similarly, given a-modules M = M0̄ ⊕ M1̄ and N = N0̄ ⊕ N1̄, every 
homomorphism of a-modules ψ : M → N is assumed to be even; that is, ψ(M0̄) ⊆ N0̄
and ψ(M1̄) ⊆ N1̄.

The following examples will be used throughout the paper.

Example 2.1. Consider a super space V = V0̄ ⊕ V1̄. The associative algebra End(V ), 
consisting of linear endomorphisms of V admits a Z2-grading defined by

End(V )z = {φ ∈ End(V ) | φ(v) ∈ Vz+z′ for all v ∈ Vz′ , z′ ∈ Z2},

and a Lie superbracket defined by [φ, ψ] = φ ◦ψ− (−1)|φ||ψ|ψ ◦ φ. This Lie superalgebra 
will be denoted by gl(V ).

Example 2.2. Consider a super space V = V0̄ ⊕ V1̄. Its exterior algebra Λ(V ) admits 
a Z2-grading given by |v1 ∧ · · · ∧ vn| = |v1| + · · · + |vn| for all homogeneous elements 
v1, . . . , vn ∈ V , and a unique Lie superbracket satisfying [v, w] = v ∧w− (−1)|v||w|w ∧ v

for all homogeneous v, w ∈ Λ(V ). It follows that

Λn(V ) =
⊕

i+j=n

Λi(V0̄) ⊗ Sj(V1̄) for all n ≥ 0.

For any Lie superalgebra g = g0̄ ⊕ g1̄, the subspace g0̄ inherits the structure of a Lie 
algebra and the subspace g1̄ inherits the structure of a g0̄-module. A finite-dimensional 
simple Lie superalgebra g is said to be classical if the g0̄-module g1̄ is completely re-
ducible. Otherwise it is said to be of Cartan type. When g is a classical Lie superalgebra, 
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Table 1
Classification of finite-dimensional simple Lie 
superalgebras with nonzero odd parts.

Lie superalgebra Classification
A(m,n), m > n ≥ 0 Basic, type I
A(n, n), n ≥ 1 Basic, type I
B(m,n), m ≥ 0, n ≥ 1 Basic, type II
C(n + 1), n ≥ 1 Basic, type I
D(m,n), m ≥ 2, n ≥ 1 Basic, type II
D(2, 1;α), α �= 0,−1 Basic, type II
F (4) Basic, type II
G(3) Basic, type II
p(n), n ≥ 2 Strange, type I
q(n), n ≥ 2 Strange, type II
H(n), n ≥ 4 Cartan type
S(n), n ≥ 3 Cartan type
S̃(n), n = 2m,m ≥ 2 Cartan type
W (n), n ≥ 2 Cartan type

the g0̄-module g1̄ is either irreducible or a direct sum of two irreducible modules. In the 
first case, g is said to be of type II, and in the second case, g is said to be of type I. 
A classical Lie superalgebra is said to be basic if it admits an even nondegenerate super-
symmetric invariant bilinear form. Otherwise, it is said to be strange. Table 1 summarizes 
the classification of finite-dimensional simple Lie superalgebras.

When g is a classical Lie superalgebra, a Cartan subalgebra of g is defined to be a 
Cartan subalgebra of the Lie algebra g0̄. When g is a Lie superalgebra of Cartan type, 
it admits a Z-grading g =

⊕
−1≤i gi that is compatible with the Z2-grading; that is, 

g0̄ =
⊕

i∈2Z gi and g1̄ =
⊕

i∈2Z gi+1, and such that g0 is a reductive Lie algebra. In this 
case, a Cartan subalgebra of g is defined to be a Cartan subalgebra of the Lie algebra g0. 
(It is worth noting that when g is of type S̃, this is only a Z-grading as a vector space, 
not as Lie superalgebras.)

Let g be a finite-dimensional simple Lie superalgebra, and let h be a Cartan subalgebra 
of g. The action of h on g is diagonalizable and we have a root space decomposition

g = h⊕
⊕

α∈h∗\{0}
gα, where gα = {x ∈ g | [h, x] = α(h)x for all h ∈ h}.

Let Δ = {α ∈ h∗ \ {0} | gα 
= 0} denote the set of roots of g and Q denote the subgroup 
of h∗ generated by Δ.

Let g be a finite-dimensional simple Lie superalgebra. Then the set of isomorphism 
classes of finite-dimensional irreducible g-modules is in bijection with a subset Λ+ of h∗
(see [17, Theorem 8]). We denote by Λ the subgroup of h∗ generated by Λ+, and by V (λ)
the irreducible g-module corresponding to λ ∈ Λ+, namely the unique finite-dimensional 
irreducible g-module of highest weight λ. Let λ∗ ∈ Λ+ denote the highest weight of the 
dual g-module V (λ)∗.

For a Lie superalgebra g and a g-module V , we define

Endg(V ) = {ϕ ∈ End(V ) | ϕ(xv) = xϕ(v), for all x ∈ g, v ∈ V },
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Endg(V )0̄ = Endg(V ) ∩ End(V )0̄ and Endg(V )1̄ = Endg(V ) ∩ End(V )1̄.

Let g1 and g2 be two finite-dimensional Lie superalgebras, and V1 and V2 be irreducible 
finite-dimensional modules for g1 and g2 respectively. The (g1 ⊕ g2)-module V1 ⊗ V2 is 
reducible only if Endg1(V1)1̄ 
= 0 and Endg2(V2)1̄ 
= 0 (see [6, Proposition 8.4]). In 
this case, by Schur’s Lemma for Lie superalgebras, Endgi(Vi)1̄ = kϕi for some ϕ2

i = 1, 
i ∈ {1, 2}, and

V̂ =
{
v ∈ V1 ⊗ V2 |

(√
−1ϕ1 ⊗ ϕ2

)
v = v

}
is an irreducible (g1 ⊕ g2)-submodule satisfying V1 ⊗ V2 ∼= V̂ ⊕ V̂ (see [6, p. 27]). Define 
the irreducible product V1⊗̂V2 to be

V1⊗̂V2 =
{
V1 ⊗ V2, if V1 ⊗ V2 is irreducible,
V̂ , otherwise.

If g1 and g2 are finite-dimensional simple Lie superalgebras not of type q, then the 
irreducible product is always equal to the tensor product.

Given � > 1, finite-dimensional Lie superalgebras g1, . . . , g�, and for each i ∈
{1, . . . , �}, an irreducible finite-dimensional gi-module Vi, define the (g1⊕· · ·⊕g�)-module 
V1⊗̂ · · · ⊗̂V� to be

V1⊗̂ · · · ⊗̂V� = (V1⊗̂ · · · ⊗̂V�−1)⊗̂V�.

Up to isomorphism, ⊗̂ is associative and, when g1 = · · · = g�, ⊗̂ is also commutative 
(see [7, Lemma 6.2]). Also, define

κ(V1, . . . , V�) =
�∑

i=2
dim End(g1⊕···⊕gi−1)

(
V1⊗̂ · · · ⊗̂Vi−1

)
1̄ dim Endgi(Vi)1̄. (2.1)

One can prove by induction that κ(V1, . . . , V�) ≤ � − 1 and that

V1 ⊗ · · · ⊗ V�
∼= (V1⊗̂ · · · ⊗̂V�)⊕2k

for k = κ(V1, . . . , V�).

2.3. Equivariant map superalgebras

In this subsection, we review results proved in [2,7,27].
Let g be a finite-dimensional simple Lie superalgebra and A be an associative, 

commutative, finitely-generated k-algebra with unit. The map superalgebra g ⊗ A is 
the Lie superalgebra with underlying vector space g ⊗k A, with Z2-grading given by 
(g ⊗A)z = gz ⊗A, z ∈ Z2, and with Lie superbracket extending bilinearly

[x⊗ a, y ⊗ b] = [x, y] ⊗ ab, for all x, y ∈ g and a, b ∈ A.
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Let Γ be a group acting on g and A by automorphisms. One can induce an action of Γ
on g ⊗A by extending linearly

γ(x⊗ a) = γ(x) ⊗ γ(a), for all γ ∈ Γ, x ∈ g and a ∈ A.

The equivariant map superalgebra (g ⊗A)Γ is the Lie subsuperalgebra of g ⊗A consisting 
of its Γ-fixed points:

(g⊗A)Γ = {x ∈ g⊗A | γx = x for all γ ∈ Γ}.

Let MaxSpec(A) denote the set of maximal ideals of A. Notice that the action of Γ on 
A induces an action of Γ on MaxSpec(A) that is explicitly given by γm = {γa | a ∈ m} ∈
MaxSpec(A) for all m ∈ MaxSpec(A) and γ ∈ Γ. For most finite-dimensional simple Lie 
superalgebras g, if Γ is a finite abelian group acting freely on MaxSpec(A), then every 
finite-dimensional irreducible (g ⊗A)Γ-module can be described in terms of generalized 
evaluation modules. These generalized evaluation modules are defined in the following 
way. Given m ∈ MaxSpec(A) and n ∈ Z>0, define evmn to be the homomorphism of Lie 
superalgebras given by the composition

evmn : g⊗A → g⊗A/g⊗ mn ∼=−→ g⊗A/mn.

For the rest of this subsection, assume that Γ is a finite group acting freely on 
MaxSpec(A).

In this case, the restriction of evmn to (g ⊗ A)Γ is surjective (see [27, Lemma 5.6]), 
and induces a surjective homomorphism of Lie superalgebras

evΓ
mn : (g⊗A)Γ → g⊗A/mn.

Given a g ⊗A/mn-module V with associated representation ρ : g ⊗A/mn → gl(V ), define 
evΓ ∗

mn(V ) to be the (g ⊗A)Γ-module with associated representation given by the pull-back 
of ρ along evΓ

mn ,

evΓ ∗
mn(ρ) : (g⊗A)Γ evΓ

mn−−−→ g⊗A/mn ρ−−→ gl(V ).

Given m ∈ MaxSpec(A) and n ∈ Z>0, denote by Irred(g ⊗ A/mn) the set of isomor-
phism classes of finite-dimensional irreducible g ⊗A/mn-modules, and denote by R the 
disjoint union

R = �
n∈Z>0

m∈MaxSpec(A)

Irred(g⊗A/mn).

Notice that the action of Γ on g ⊗A induces an action of Γ on R. Namely, let [V ] be an 
element in R, and let V be a representative of the class [V ] with associated representation 
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ρ : g ⊗A/mn → gl(V ). For each γ ∈ Γ, define γ · [V ] in R to be the isomorphism class of 
the g ⊗A/(γm)n-module V γ , whose associated representation ργ : g ⊗A/(γm)n → gl(V )
is given by ργ(x) = ρ(γ−1x), for all x ∈ g ⊗A/(γm)n.

Denote by P the set of Γ-equivariant functions π : MaxSpec(A) → R satisfying the 
following conditions:

• For each m ∈ MaxSpec(A), π(m) ∈ Irred(g ⊗A/mn) for some n > 0;
• π(m) is the isomorphism class of the trivial (one-dimensional irreducible) module for 

all but finitely many m ∈ MaxSpec(A).

Notice that for any two representatives V and V ′ of π(m) ∈ Irred(g ⊗ A/mn), there is 
an isomorphism of (g ⊗A)Γ-modules evΓ ∗

mnV ∼= evΓ ∗
mnV ′. Thus we will abuse notation and 

for each maximal ideal m ⊆ A, we will denote by π(m) an arbitrary but fixed choice of 
(g ⊗A/mn)-module representative of π(m).

Given π ∈ P, define its support to be Supp (π) = {m ∈ MaxSpec(A) |
π(m) is nontrivial}, and let Supp ∗(π) be a subset of MaxSpec(A) which contains ex-
actly one element of each Γ-orbit in Supp (π). Since every π ∈ P is Γ-equivariant, up to 
isomorphism, the (g ⊗ A)Γ-module 

⊗̂
m∈Supp ∗(π)evΓ ∗

mnπ(m) is independent of the choice 
of Supp ∗(π) (see [27, Lemma 5.9]). Thus for every π ∈ P, we fix an arbitrary subset 
Supp ∗(π) as above and define V(π) to be the (g ⊗A)Γ-module

V(π) =
⊗̂

m∈Supp ∗(π)

evΓ ∗
mnπ(m).

For most finite-dimensional simple Lie superalgebras, it is known that every finite-
dimensional irreducible (g ⊗A)Γ-module is isomorphic to V(π) for a unique π ∈ P. This 
was proved by Savage when g is a basic Lie superalgebra (see [27, §7]), by Bagci when g is 
a Lie superalgebra of Cartan type (see [2, Theorem 4.3]), and by the first author, Moura 
and Savage when g is a queer Lie superalgebra (see [7, Theorem 7.1]). In Section 3, we 
will show that, if g is of type p, then every finite-dimensional irreducible (g ⊗A)Γ-module 
is also isomorphic to V(π) for a unique π ∈ P, and that n = 1 for all m ∈ Supp ∗(π). This 
completes the classification of finite-dimensional irreducible modules for equivariant map 
superalgebras associated to finite-dimensional simple Lie algebras.

Moreover, if g is of type II, H, S or S̃, then every finite-dimensional irreducible 
(g ⊗A)Γ-module is isomorphic to V(π) for a unique π ∈ P with n = 1 for all m ∈ Supp ∗(π)
(these modules are called evaluation modules by Savage, see [27, Definition 5.2]). It is 
important to remark that if g is of type I, then there exist finite-dimensional irreducible 
(g ⊗ A)Γ-modules which are isomorphic to generalized evaluation modules but not to 
evaluation modules [8, §4].

Remark 2.3. Let n, n′ ∈ Z>0 with n′ ≤ n, let m be a maximal ideal in A, and let V be a 
g ⊗A/mn′-module with corresponding representation ρ : g ⊗A/mn′ → gl(V ). Since n′ ≤ n, 
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then mn ⊆ mn′ , and therefore we have a canonical projection π : g ⊗A/mn � g ⊗A/mn′ . 
We can thus regard V as a g ⊗A/mn-module with representation given by ρ ◦ π.

Notice that as representations of (g ⊗ A)Γ, evΓ ∗
mn′ (ρ ◦ π) and evΓ ∗

mn(ρ) are the same. 
Hence, the (g ⊗ A)Γ-modules evΓ ∗

mn′V and evΓ ∗
mnV are isomorphic. Moreover, if ρ is an 

irreducible representation of g ⊗A/mn′ , then ρ ◦π is an irreducible representation of g ⊗
A/mn. As a consequence, given any two finite-dimensional irreducible (g ⊗A)Γ-modules 
V and V ′, one loses no generality in assuming that there exist integers �, n ∈ Z>0, 
maximal ideals m1, . . . , m� ∈ MaxSpec(A) in distinct Γ-orbits, and for each i ∈ {1, . . . , �}, 
irreducible g ⊗A/mn

i -modules Vi, V ′
i , such that V ∼=

⊗̂�

i=1evΓ ∗
mn

i
Vi and V ′ ∼=

⊗̂�

i=1evΓ ∗
mn

i
V ′
i .

Given π ∈ P, let �, n1, . . . , n� ∈ Z>0, m1, . . . , m� be maximal ideals of A in distinct 
Γ-orbits, and for each i ∈ {1, . . . , �}, let Vi be an irreducible g ⊗A/mni

i -module such that 
V(π) ∼=

⊗̂�

i=1evΓ ∗
mni

i
Vi. Recall from (2.1) the definition of κ(V1, . . . , V�), and define κ(π)

to be

κ(π) = κ(V1, . . . , V�), (2.2)

and notice that V(π)⊕2κ(π) ∼=
⊗

m∈Supp (π) evΓ ∗
mnπ(m) for all π ∈ P.

2.4. Ideals

Throughout this subsection, let g be a finite-dimensional simple Lie superalgebra and 
A be an associative, commutative, finitely-generated k-algebra with unit. Define the 
support of an ideal I ⊆ A to be

Supp (I) = {m ∈ MaxSpecA | I ⊆ m}.

Lemma 2.4. Let I and J be ideals of A.

(a) For any n > 0, we have Supp (I) = Supp (In).
(b) If A is finitely generated, then Supp (I) is finite if and only if I has finite codimension 

in A.
(c) If Supp (I) ∩Supp (J) = ∅, then I +J = A and IJ = I ∩J . Moreover, Im +Jn = A

and ImJn = Im ∩ Jn for any m, n > 0.
(d) If A is Noetherian, then every ideal I ⊆ A contains a power of its radical. In partic-

ular, rad I =
∏

m∈Supp (I) m.

Proof. To prove part (a), fix n > 0. It is clear that Supp (I) ⊆ Supp (In). The reverse 
inclusion follows from the fact that maximal ideals are also prime. Indeed, suppose m is 
a maximal ideal containing In. Then for all a ∈ I, we have an ∈ m. Since maximal ideals 
are prime ideals, this implies that a ∈ m, showing that I ⊆ m. The proofs of parts (b), 
(c) and (d) can be found in [27, §2.1]. �
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The next result is a generalization of [27, Corollary 4.17] and will be used in the proof 
of Lemma 5.3.

Proposition 2.5. Let Γ be a finite group acting freely on MaxSpec(A) and M be a 
finite-dimensional (g ⊗ A)Γ-module. Then there exist �, n ∈ Z>0 and m1, . . . , m� ∈
MaxSpec(A), such that mn

1 · · ·mn
� is a Γ-invariant finite-codimensional ideal of A and 

(g ⊗ mn
1 · · ·mn

� )ΓM = 0.

Proof. We begin by proving the case where Γ is trivial. Let ρ : g ⊗ A → gl(M) be the 
representation of g ⊗ A corresponding to M . Notice that ker ρ is a finite-codimensional 
ideal of g ⊗ A, since M is finite dimensional. Thus, by [27, Proposition 8.1], ker ρ
must be of the form g ⊗ I, for some finite-codimensional ideal I ⊆ A. Now, by 
Lemma 2.4(b), the fact that I is finite-codimensional implies that I has finite support; 
that is, Supp(I) = {m1, . . . , m�} for some � > 0. Since these maximal ideals are pairwise 
distinct, the radical of I is given by rad I = m1 · · ·m�. Moreover, since A is assumed 
to be finitely generated, by Lemma 2.4(d), there exists n > 0, such that (rad I)n ⊆ I; 
that is, such that mn

1 · · ·mn
� ⊆ I. We thus conclude that there exist n, � ∈ Z>0 and 

m1, . . . , m� ∈ MaxSpec(A) such that (g ⊗ mn
1 · · ·mn

� )M = 0.
For the case where Γ acts non trivially on g ⊗A, we recall that, by [27, Proposition 8.5], 

M is the restriction of a finite-dimensional g ⊗ A-module M ′. From the case where Γ
is trivial, since M ′ is finite dimensional, there exist n, k ∈ Z>0 and maximal ideals 
m1, . . . , mk ⊆ A, such that (g ⊗ mn

1 · · ·mn
k )M = 0. Consider all ideals of the form γmi, 

with γ ∈ Γ and i ∈ {1, . . . , k}. Since Γ is a finite group, we can enumerate the elements 
of {γmi | γ ∈ Γ, i ∈ {1, . . . , k}} as m1, . . . , m�, with � ≤ |Γ|k. (Notice that � ≤ |Γ|k
only if mi /∈ Γmj , for 1 ≤ i 
= j ≤ k.) Moreover, notice that mn

1 · · ·mn
� is a Γ-invariant 

finite-codimensional ideal and

(g⊗ mn
1 · · ·mn

� )ΓM = (g⊗ mn
1 · · ·mn

k )ΓM ′ ⊆ (g⊗ mn
1 · · ·mn

k )M ′ = 0. �
2.5. Cohomology of Lie superalgebras

Let g = g0̄ ⊕ g1̄ be a Lie superalgebra and V be a g-module. Since g and V are 
Z2-graded, Λng ⊗ V and Homk(Λng, V ) are naturally Z2-graded. Namely

(Λng⊗ V )z = {x1 ∧ · · · ∧ xn ⊗ v | |x1| + · · · + |xn| + |v| = z} and

Homk(Λng, V )z = {f : Λng → V | f(λ) ∈ Vw+z, λ ∈ (Λng)w, w ∈ Z2},

for all n ≥ 0 and z ∈ Z2.
Given two g-modules V and U , consider Homk(V, U) as a g-module, where, for homo-

geneous elements x ∈ g and f ∈ Homk(V, U), we have

(xf)(v) = x(f(v)) − (−1)|x||f |f(xv), for all v ∈ V.
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Define Ext•g(V, U) to be the cohomology of the cocomplex

0 −→ Homk(V,U) ∂0

−−→ Homk(g,Homk(V,U)) ∂1

−−→ Homk(Λ2g,Homk(V,U)) ∂2

−−→ · · · ,
(2.3)

where, for all f ∈ Homk(Λng, Homk(V, U)), its image under the differential ∂n extends 
linearly

∂nf(x0 ∧ · · · ∧ xn)

=
∑

0≤i≤n

(−1)i+|xi|(|f |+|x0|+···+|xi−1||)xif(x0 ∧ · · · ∧ x̂i ∧ · · · ∧ xn) (2.4)

+
∑

0≤i<j≤n

(−1)j+|xj |(|xi+1|+···+|xj−1||)f(x0 ∧ . . . xi−1 ∧ [xi, xj ] ∧ xi+1 ∧ · · · ∧ x̂j ∧ · · · ∧ xn),

for all homogeneous elements x0, . . . , xn ∈ g, n ≥ 0. In particular, define H•(g, U), the 
cohomology of g with coefficients in U , to be Ext•g(k, U). Notice that, the differentials 
∂• respect the Z2-grading on Homk(Λ•g, Homk(V, U)), thus it induces a Z2-grading on 
Ext•g(V, U). We denote H•(g, U)z by H•

z(g, U) for all z ∈ Z2.
We now state some homological techniques that will be used in this paper. This first 

lemma reduces the computation of extensions between finite-dimensional modules to the 
computation of cohomologies.

Lemma 2.6. If s is a Lie superalgebra and U , V and W are finite-dimensional s-modules, 
then we have the following isomorphisms of s-modules:

U ⊗ V ∼= V ⊗ U, (U ⊗ V )∗ ∼= U∗ ⊗ V ∗,

Homk(U ⊗ V,W ) ∼= Homk(U, V ∗ ⊗W ), and

Extns (V,U) ∼= Hn(s, V ∗ ⊗ U), for all n > 0.

Proof. The proof is similar to that of [21, Lemma 3.1.13]. �
The following lemma reduces the computation of the cohomology of any trivial 

s-module; that is, any s-module V such that s · V = 0, to that of the trivial s-module k. 
Its proof follows directly from the definition of the differentials (2.4).

Lemma 2.7. If s is a Lie superalgebra and V is a finite-dimensional trivial s-module, then

H•(s, V ) ∼= H•(s, k) ⊗ V.

The following proposition is a special case of the well known Künneth formula.
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Proposition 2.8. If s1, s2 are Lie superalgebras, U1, V1 are s1-modules and U2, V2 are 
s2-modules, then

Extns1⊕s2(U1 ⊗ U2, V1 ⊗ V2) ∼=
⊕

p+q=n

Extp
s1(U1, V1) ⊗ Extq

s2(U2, V2), n ≥ 0.

Proof. The proof follows from [33, Theorem 3.6.3] using standard arguments. �
The following result is a graded version of Lyndon–Hochschild–Serre spectral se-

quence. In the superalgebra setting, a filtration by powers of an ideal turns out to be 
Z2-graded, thus yielding two spectral sequences that converge respectively to even and 
odd cohomologies (see Section 4 for further details).

Proposition 2.9 ([12, Chapter 1, §6.5]). If s is a Lie superalgebra, V is a s-module and 
i ⊆ s is an ideal, then there exist first-quadrant cohomology convergent spectral sequences

Ep,q
2

∼= Hp
z(s/i,Hq

z(i, V )) ⇒ Hp+q
z (s, V ), z ∈ Z2.

The following result is a superalgebra generalization of a well-known result for Lie 
algebra cohomology. We record it as it will be used to prove Lemma 2.11, and we have 
not yet seen in the literature.

Lemma 2.10. For any Lie superalgebra s, we have

H1
0̄(s, k) ∼= (s0̄/([s0̄, s0̄] + [s1̄, s1̄]))∗ and H1

1̄(s, k) ∼= H0(s0̄, s∗1̄) ∼= (s1̄/[s0̄, s1̄])∗.

Proof. Recall that the cocomplex Λ•s∗ is Z2-graded, that the differential ∂• preserves 
this grading, and that it induces a Z2-grading on H•(s, k). We will compute each graded 
component of H1(s, k). First notice that the restriction of ∂1 to the even part is ∂1

0̄ : s∗0̄ →
Λ2s∗0̄ ⊕ S2s∗1̄, and that the restriction of ∂1 to the odd part is ∂1

1̄ : s∗1̄ → s∗0̄ ⊗ s∗1̄.
By definition, H1(s, k) = ker(∂1)/ im(∂0), where ∂0 : k → s∗ is given by ∂0(λ)(x) =

x ·λ = 0 for all λ ∈ k, x ∈ s, and ∂1 : s∗ → Λ2s∗ is given by ∂1(ϕ)(x ∧ y) = −ϕ([x, y]) for 
all ϕ ∈ s∗, x, y ∈ s. So, in order to compute H1(s, k) it is enough to determine ker(∂1).

From the formula of ∂1, it follows that ∂1
0̄(ϕ) = 0 if and only if ϕ([s0̄, s0̄] +[s1̄, s1̄]) = 0. 

Thus H1
0̄(s, k) ∼= (s0̄/[s0̄, s0̄] + [s1̄, s1̄])∗. Also from the formula of ∂1, one can see that 

ker(∂1
1̄) is the kernel of ∂0 in the cocomplex used for computing the cohomology of the 

Lie algebra s0̄ with coefficients in s∗1̄ (see Section 2.5). Thus H1
1̄(s, k) ∼= H0(s0̄, s∗1̄). �

The next result follows from the previous one. It will be used in the proof of Lemma 5.3.

Lemma 2.11. Let g be a finite-dimensional simple Lie superalgebra, A be an associative, 
commutative algebra with unit, Γ be an abelian group acting on g and A by automor-
phisms, and I be a Γ-invariant ideal of A. If g1̄ is nonzero, then
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H1
0̄((g⊗ I)Γ, k) ∼=

((
g0̄ ⊗ I/I2)Γ)∗

and H1
1̄((g⊗ I)Γ, k) ∼=

((
g1̄ ⊗ I/I2)Γ)∗

.

Proof. First notice that g0̄ ⊕ [g0̄, g1̄] and [g1̄, g1̄] ⊕ g1̄ are ideals of g. When g is simple 
and g1̄ is nonzero, this implies that [g0̄, g1̄] = g1̄ and [g1̄, g1̄] = g0̄. Hence:

[
(gz ⊗ I)Γ, (g1̄ ⊗ I)Γ

]
= [gz ⊗ I, g1̄ ⊗ I]Γ =

(
[gz, g1̄] ⊗ I2)Γ = (gz+1̄ ⊗ I2)Γ, z ∈ Z2.

The result follows from Lemma 2.10. �
The next corollary follows from Lemma 2.11 and, as far as we know, it is a new result.

Corollary 2.12. Let g be a finite-dimensional simple Lie superalgebra with g1̄ 
= 0, A be 
an associative, commutative algebra with unit, and Γ be an abelian group acting on g
and A by automorphisms. If M and N are finite-dimensional trivial (g ⊗ A)Γ-modules, 
then Ext1(g⊗A)Γ(M, N) = 0. In particular, H1((g ⊗A)Γ, k) = 0.

Proof. By Lemma 2.6, Ext1(g⊗A)Γ(M, N) ∼= H1((g ⊗A)Γ, M∗ ⊗N). Since M and N are 
finite-dimensional trivial (g ⊗A)Γ-modules, by Lemma 2.7,

H1((g⊗A)Γ,M∗ ⊗N) ∼= H1((g⊗A)Γ, k) ⊗ (M∗ ⊗N).

Since A is an associative, commutative algebra with unit, then A2 = A. Thus, by 
Lemma 2.11, H1((g ⊗A)Γ, k) = 0. The result follows. �
3. Equivariant periplectic map Lie superalgebras

3.1. Structure of periplectic Lie superalgebras

Given n ≥ 2, the periplectic Lie superalgebra p(n) is the Lie subalgebra of gl(n +
1, n + 1) whose elements are matrices of the form

M =
(

A B

C −At

)
, (3.1)

where A ∈ sln+1, B = Bt and Ct = −C.

Throughout this section, we will denote p(n) by g.

The even part, g0̄, is isomorphic to the Lie algebra sln+1. The structure of g1̄ is the 
following. Let S2(kn+1) (resp. Λ2(kn+1)∗) denote the second symmetric (resp. exterior) 
power of kn+1 (resp. (kn+1)∗), with the action of sln+1 induced by matrix multiplication, 
and let g+

¯ (resp. g−¯ ) be the set of all matrices of the form (3.1) such that A = C = 0
1 1
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(resp. A = B = 0). As a g0̄-module, we have: g1̄
∼= g

+
1̄ ⊕ g

−
1̄ , g

+
1̄

∼= S2(kn+1) and 
g
−
1̄
∼= Λ2(kn+1)∗.
If we set g−1 = g

−
1̄ , g0 = g0̄ and g1 = g

+
1̄ , then g = g−1 ⊕ g0 ⊕ g1 is a Z-grading of g

which is compatible with the Z2-grading; that is, g0̄ = g0 and g1̄ = g−1 ⊕ g1. Let h ⊆ g0

be the Cartan subalgebra of g0 formed by diagonal matrices. Since g0 is isomorphic to 
sln+1, we can identify h with its dual via the bilinear, nondegenerate, g0-invariant form 
(A1, A2) = tr(A1A2). For i ∈ {1, . . . , n +1}, let εi be the unique element in h∗ satisfying

εi(Ej,j +Ek,k−En+j+1,n+j+1−En+k+1,n+k+1) = δi,j +δi,k for all 1 ≤ j 
= k ≤ n+1.

The roots of g are described as follows:

• Roots of g−1: −εi − εj , where 1 ≤ i < j ≤ n + 1.
• Roots of g0: εi − εj , where 1 ≤ i 
= j ≤ n + 1.
• Roots of g1: εi + εj , where 1 ≤ i ≤ j ≤ n + 1.

Choose a triangular decomposition n−0 ⊕ h ⊕ n
+
0 of the Lie algebra g0 such that the 

positive roots are: εi − εj , with i < j. We fix a triangular decomposition n− ⊕ h ⊕ n+

of p(n), where n± = g±1 ⊕ n
±
0 , and denote by b = h ⊕ n+ a Borel subalgebra of p(n). 

Notice that all the roots of g1 are positive.

3.2. Construction of finite-dimensional irreducible modules

Recall that throughout this section we are denoting g = p(n), n ≥ 2. Let A be 
an associative commutative algebra with unit. In this subsection we will construct some 
finite-dimensional irreducible p(n) ⊗A-modules which will be used in the next subsection.

For each ψ ∈ (h ⊗ A)∗, denote by kψ the one-dimensional b ⊗ A-module where the 
action of n+ ⊗ A is trivial and the action of h ⊗ A is given by ψ. Define a Verma type 
module M(ψ) to be

M(ψ) = U(g⊗A) ⊗U(b⊗A) kψ.

Since a submodule of M(ψ) is proper if and only if its intersection with kψ is trivial, 
M(ψ) admits a unique maximal non-proper submodule. Let V (ψ) denote the unique 
irreducible quotient of M(ψ) by such a submodule.

Proposition 3.1. Every finite-dimensional irreducible g ⊗A-module is isomorphic to V (ψ), 
for some ψ ∈ (h ⊗A)∗.

Proof. The proof of [27, Proposition 4.5] only requires the existence of a nonzero weight 
vector v ∈ V . Since h ⊗A is abelian, such a vector always exists. �
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The annihilator AnnA(V ) of a g ⊗A-module V is, by definition, the sum of all ideals 
I of A such that (g ⊗ I)V = 0. The support of V is defined to be

Supp (V ) = Supp (AnnA(V )).

Proposition 3.2. The tensor product of two irreducible finite-dimensional g ⊗A-modules 
with disjoint supports is irreducible as well.

Proof. This proof is similar to that of [27, Proposition 4.12]. �
The proof of the next result follows ideas contained in [27, Theorem 4.16] (see also [2, 

Lemma 2.3] and [3, Proposition 4.3]).

Proposition 3.3. Let ψ ∈ (h ⊗ A)∗. The weight spaces of V (ψ) are finite dimensional if 
and only if there exists an ideal I of A of finite codimension such that (g ⊗ I)V (ψ) = 0.

Proof. Suppose all the weight spaces of V (ψ) are finite dimensional and let v be a 
highest weight vector of V (ψ). Let Δ− denote the set {−εi ± εj | 1 ≤ i < j ≤ n}. For 
each α ∈ Δ−, define Iα to be {a ∈ A | (gα ⊗ a)v = 0}. Since each weight space of V (ψ)
is finite dimensional, Iα is an ideal of A of finite codimension. Let I be 

⋂
α∈Δ− Iα. Since 

g is finite dimensional, I is an intersection of finitely many finite-codimensional ideals. 
In particular, I is also a finite-codimensional ideal of A. We claim that (g ⊗ I)V (ψ) = 0. 
Indeed, the fact that (n+ ⊗ A)v = 0 follows from the fact that v is a highest weight 
vector. The fact that (n− ⊗ I)v = 0 follows from the construction of I. Finally, notice 
that h ⊆ [n−, n+], and so (h ⊗ I)v ⊆ [n− ⊗ I, n+ ⊗ A]v = 0. Thus (g ⊗ I)v = 0 and 
hence W = {w ∈ V (ψ) | (g ⊗ I)v = 0} is a non-trivial submodule of V (ψ). Since V (ψ)
is irreducible, we conclude that W = V (ψ).

Suppose now there exists a finite-codimensional ideal I of A such that (g ⊗ I)V (ψ). 
Then the action of g ⊗A on V (ψ) factors through an action of the finite-dimensional Lie 
superalgebra g ⊗ A/I. Thus, by standards arguments using the PBW Theorem, all the 
weight spaces of V (ψ) are finite dimensional. �

For the remainder of this section, we will assume that A is finitely generated.

Proposition 3.4. Let ψ ∈ (h ⊗A)∗. The support of V (ψ) is finite if and only if there exists 
a finite-codimensional ideal I of A such that (g ⊗ I)V (ψ) = 0.

Proof. Recall that Supp V (ψ) = Supp AnnA(V (ψ)). So AnnA(V (ψ)) has finite codi-
mension if and only if there exists a finite-codimensional ideal I of A such that 
(g ⊗ I)V (ψ) = 0. Since A is finitely generated, AnnA(V (ψ)) has finite codimension 
if and only if its support is finite. �

Before stating the next result, recall that g0̄ is a finite-dimensional simple Lie algebra.
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Proposition 3.5. If V is an irreducible finite-dimensional g ⊗A-module, then (g ⊗J)V = 0
for some radical ideal J of A of finite codimension.

Proof. Since V is irreducible and has finite dimension, Proposition 3.3 implies that 
(g ⊗ I)V = 0 for some finite-codimensional ideal I of A. Let J =

√
I be the radical of I. 

We will show that (g ⊗J)V = 0. Since we are assuming that A is finitely generated (and 
in particular, Noetherian), there exists some power of J that is contained in I. Then 
g ⊗ (I/J) is a solvable Lie superalgebra satisfying the following property:

[(g⊗ (J/I))1̄, (g⊗ (J/I))1̄] = [g1̄, g1̄] ⊗ (J2/I) ⊆ g0̄ ⊗ (J2/I)

= [(g⊗ (J/I))0̄, (g⊗ (J/I))0̄] ,

where the last equality follows from the fact that g0̄ is a simple Lie algebra. Therefore, it 
follows from [17, Proposition 5.2.4], that any irreducible finite-dimensional representation 
of g ⊗ J is one-dimensional. Then there exists a nonzero vector w ∈ V , and an element 
μ ∈ (g ⊗ J)∗, such that xw = μ(x)w for all x ∈ g ⊗ J . We claim that μ = 0. Since V is 
finite dimensional, for any z ∈ n±⊗J , there exists m ≥ 0 such that zmw = μ(z)mw = 0. 
In other words, μ(n± ⊗ J) = 0, and hence (n± ⊗ J)w = 0. Let μ′ denote the restriction 
of μ to g0̄ ⊗ J . Since g0̄ is a simple Lie algebra, it follows that the kernel of μ′ must be 
g0̄⊗J . In particular, μ′(h ⊗J) = 0, since h ⊆ g0̄. We have thus proved that (g ⊗J)w = 0. 
Now the result follows from the irreducibility of V along with the fact that W = {v ∈
V | (g ⊗ J)v = 0} is a nonzero submodule of V . �
3.3. Classification of finite-dimensional irreducible modules

Recall that we are assuming that g = p(n), n ≥ 2, and that A is an associative, 
commutative, finitely-generated algebra with unit. In this subsection we will classify all 
the finite-dimensional irreducible (g ⊗A)Γ-modules in the case where Γ is a finite abelian 
group acting on g and A by automorphisms and such that the induced action of Γ on 
MaxSpec(A) is free.

Recall from Section 2.3 that for every m ∈ MaxSpec(A) one may consider the com-
position

evm : g⊗A → g⊗A/g⊗ m
∼=−→ g.

Furthermore for a g-module V with associated representation ρ : g → gl(V ), the module 
ev∗

m(V ) is defined to be the g ⊗ A-module with associated representation given by the 
pull-back of ρ along evm:

ev∗
m(ρ) : g⊗A

evm−−→ g
ρ−−→ gl(V ).
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The g ⊗A-module ev∗
m(V ) is called an evaluation module and its associated representation 

ev∗
m(ρ) is called an evaluation representation. Define evΓ ∗

m (ρ) to be the restriction of 
ev∗

m(ρ) to (g ⊗A)Γ.

Theorem 3.6. Every irreducible finite-dimensional g ⊗ A-module V is isomorphic to a 
tensor product of evaluation modules.

Proof. Since V is finite dimensional, by Proposition 3.5, there exists a radical ideal 
I of A of finite codimension such that (g ⊗ I)V = 0. Since A is finitely generated 
and I has finite codimension, Lemma 2.4 (b) implies that the support of I is finite. 
If Supp (I) = {m1, . . . , mn} ⊆ MaxSpec(A), then I =

√
I = m1 · · ·mn. Therefore the 

action of g ⊗A on V factors through the map

g⊗A � g⊗A/I
∼=−→

n⊕
i=1

g⊗A/mi

∼=−→ g⊕n. (3.2)

In other words, V is isomorphic to the pull-back of an irreducible finite-dimensional 
g⊕n-module W along (3.2). Notice that W is also an irreducible finite-dimensional 
module for U (g⊕n) ∼= U(g)⊗n. By [6, Proposition 8.4], there exist irreducible finite-
dimensional modules V1, . . . , Vn for U(g) such that W is either isomorphic to V1⊗· · ·⊗Vn

or to a proper submodule of V1 ⊗ · · · ⊗ Vn. Since V1 ⊗ · · · ⊗ Vn is irreducible by Propo-
sition 3.2, W ∼= V1 ⊗ · · · ⊗ Vn, and V is isomorphic to a tensor product of evaluation 
modules. �

From now on we will assume that Γ is a finite abelian group acting on 
g and A by automorphisms and such that the induced action of Γ on 
MaxSpec(A) is free.

Let Irred(g) (resp. Irred(g ⊗ A)Γ) be the set of isomorphism classes of irreducible 
finite-dimensional modules for g (resp. (g ⊗ A)Γ). Let [V ] ∈ Irred(g) denote the iso-
morphism class of a g-module V . Notice that, if V and V ′ are isomorphic g-modules, 
then evΓ ∗

m (V ) and evΓ ∗
m (V ′) are isomorphic (g ⊗ A)Γ-modules. Therefore, for each 

[V ] ∈ Irred(g), we define evΓ ∗
m [V ] to be the isomorphism class of evΓ ∗

m (V ) in Irred(g ⊗A)Γ.
Also recall that the action of Γ on g induces an action of Γ on Irred(g). Namely, if V is 

a g-module representative of [V ] ∈ Irred(g) with associated representation ρ : g → gl(V ), 
then γ[V ] = [V γ ], where V γ is a g-module with underlying vector space V and associated 
representation ρ′ : g → gl(V ) given by ρ′(x) = ρ(γ−1x) for all x ∈ g.

Let P be the set of Γ-equivariant functions π : MaxSpec(A) → Irred(g) such that 
π(m) = [k] for all but finitely many distinct m ∈ MaxSpec(A). Given π ∈ P, recall that 
its support is defined to be Supp (π) = {m ∈ MaxSpec(A) | π(m) is nontrivial}. Let X∗
denote the set of all finite subsets M ⊆ MaxSpec(A) satisfying the following property: if 
m and m′ are distinct elements in M, then m /∈ Γm′. As in Section 2.3, for each π ∈ P, 
fix an element Supp ∗(π) in X∗ containing one element of each Γ-orbit in Supp (π), and 
define V(π) to be the (g ⊗A)Γ-module
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V(π) =
⊗

m∈Supp ∗(π)

evΓ ∗
m π(m).

Lemma 3.7. With the above notation, the following hold:

(a) For every π ∈ P, the isomorphism class of V(π) does not depend on the choice of 
Supp ∗(π).

(b) For every π ∈ P, the (g ⊗A)Γ-module V(π) is irreducible.
(c) The map P → Irred(g ⊗A)Γ given by π �→ V(π) is injective.

Proof. Part (a) follows from [27, Lemma 5.9]. Part (b) follows from Proposition 3.2 along 
with the fact that the map evΓ ∗

m is surjective for all m ∈ MaxSpec(A). Part (c) follows 
from [27, Proposition 5.11]. Notice that the condition of g being basic is not used in the 
proofs of the results cited from [27]. �
Proposition 3.8. Every finite-dimensional (g ⊗ A)Γ-module V is isomorphic to the re-
striction of a finite-dimensional g ⊗ A-module V ′ whose support is in X∗. Moreover, V
is irreducible if and only if V ′ is.

Proof. The proof of this fact for any finite-dimensional simple Lie superalgebra is the 
same as the proof of [27, Proposition 8.5]. Notice that, although the fact that Supp (V ′)
is an element of X∗ is not stated, it is also proved there. �
Theorem 3.9. Let A be an associative, commutative, finitely-generated algebra with unit, 
Γ be a finite abelian group acting on A and g by automorphisms, and such that the induced 
action of Γ on MaxSpec(A) is free. The map P → Irred(g ⊗ A)Γ given by π �→ V(π) is 
a bijection.

Proof. Recall from Lemma 3.7(c) that the map P → Irred(g ⊗A)Γ given by π �→ V(π) is 
injective. Let V be an irreducible finite-dimensional (g ⊗A)Γ-module. By Proposition 3.8, 
V is isomorphic to the restriction of an irreducible finite-dimensional g ⊗A-module V ′, 
whose support is in X∗. Hence, by Theorem 3.6, V ′ ∼=

⊗n
i=1 ev∗

mi
(Vi) for some n ≥ 0, 

{m1, . . . , mn} ∈ X∗ and irreducible finite-dimensional g-modules V1, . . . , Vn. Thus, V is 
isomorphic to V(π), where π(mi) = [Vi] for all i ∈ {1, . . . , n}, and π(m) = [k] for all 
m /∈ Supp (V ′). �
4. Transgression maps

Let s be a Lie superalgebra and consider the exterior algebra Λ•s with s-module 
structure induced by the adjoint representation. Given an ideal i � s, define an increasing 
filtration 0 = Λ0 � Λ1 � · · · � Λ = Λ•s by:

Λn
p = span

k
{x1 ∧ · · · ∧ xn | xi1 , . . . , xik ∈ i for some k > n− p, 1 ≤ i1 < . . . < ik ≤ n},
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Λn
p = Λns if p > n and

for all 0 < p ≤ n.

Now, given a s-module M , define a decreasing filtration 0 � · · · � C1 � C0 =
Homk (Λ•s,M) by

Cp = {f : Λ → M | f(Λp) = 0} ∼= Homk (Λ/Λp,M) .

Recall that by definition, H•(s, M), the cohomology of s with coefficients in M , is the 
cohomology of the cocomplex (Homk(Λ•s,M), ∂•) where

∂nf(x0 ∧ · · · ∧ xn)

=
∑

0≤i≤n

(−1)i+|xi|(|f |+|x0|+···+|xi−1||)xif(x0 ∧ · · · ∧ x̂i ∧ · · · ∧ xn) (4.1)

+
∑

0≤i<j≤n

(−1)j+|xj |(|xi+1|+···+|xj−1||)f(x0 ∧ . . . xi−1 ∧ [xi, xj ] ∧ xi+1 ∧ · · · ∧ x̂j ∧ · · · ∧ xn),

for all n ≥ 0, f : Λns → M and x0, . . . , xn ∈ s. Moreover, notice that ∂(Cp) ⊆ Cp for all 
p ≥ 0. We will use this filtration to construct a spectral sequence converging to H•(s, M).

4.1. E0-page

Let Ep,q
0 = Cp+q

p /Cp+q
p+1 (p, q ≥ 0). Since Cn

p consists of maps in Homk (Λns,M) that 
vanish on Λn

p (and similarly for Cn
p+1), we have

Ep,q
0

∼= Homk

(
Λp+q
p+1/Λp+q

p ,M
)

for all p, q ≥ 0,

where f ∈ Homk(Λp+q
p+1/Λp+q

p , M) corresponds to an equivalence class of maps in 
Homk(Λp+qs, M) that vanish on Λp+q

p modulo those maps that vanish on Λp+q
p+1. Now 

recall that, as a vector space, s ∼= i ⊕ (s/i) and thus Λns ∼=
⊕n

j=0 Λn−j i ⊗Λj(s/i). Using 
this isomorphim and the definition of Λn

p , we see that

Λn
p
∼=

p−1⊕
j=0

Λn−j i⊗ Λj(s/i) and

Λp+q
p+1/Λp+q

p
∼= Λqi⊗ Λp(s/i) for all p, q, n ≥ 0. (4.2)

From now on, we will fix a (vector space) splitting of the map s → s/i. We will thus 
identify s/i with a subspace of s (namely, its image under the splitting) and, given an 
element x ∈ s/i, we will denote by x̃ its corresponding representative in s.

Consider the map dp,q0 : Ep,q
0 → Ep,q+1

0 explicitly given by dp,q0 (f + Cp+q
p+1) = ∂p+qf +

Cp+q+1
p+1 . Using the explicit formula for ∂p+qf (4.1) and the isomorphisms (4.2), we see 

that
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∂p+qf(i0 ∧ · · · ∧ iq ⊗ x̃1 ∧ · · · ∧ x̃p) (4.3)

=
∑

0≤�≤q

(−1)�+|x�|(|f |+|x0|+···+|x�−1||)i�f(i0 ∧ · · · ∧ î� ∧ · · · ∧ iq ⊗ x̃1 ∧ · · · ∧ x̃p)

+
∑

0≤j<k≤q

(−1)σ(j,k)f(i0 ∧ . . . ij−1 ∧ [ij , ik] ∧ ij+1 ∧ · · · ∧ îk ∧ · · · ∧ iq ⊗ x̃1 ∧ · · · ∧ x̃p),

where σ(j, k) = k + |xk|(|xj+1| + · · · + |xk−1||), for all i0, . . . , iq ∈ i and representatives 
x̃1, . . . , ̃xp ∈ s of corresponding elements in s/i. (Notice that (4.3) does not depend on 
the choice of these representatives, as any other choice would differ from this one by 
elements in i, and f vanishes when more than q of its arguments are in i.)

Thus, for each p, q ≥ 0, we have an isomorphism Ep,q
0

∼= Homk (Λqi,Homk(Λp(s/i),M))
and we can identify dp,q0 with the q-th differential in the cocomplex
(Homk (Λ•i,Homk(Λp(s/i),M)) , ∂•

i ), where Homk(Λp(s/i), M) is viewed as an i-module 
via (if)(x) = i(f(x)) for all i ∈ i, x ∈ Λp(s/i) and f ∈ Homk(Λp(s/i), M). (The s-module 
structure on Homk(Λp(s/i), M) is given by (yf)(x) = y(f(x)) − (−1)|y||f |f(y · x) for all 
y ∈ s, f ∈ Homk(Λp(s/i), M) and x ∈ Λp(s/i). Since [i, s] ⊆ i, we have that the action of 
i on Λp(s/i) is trivial, and thus i · x = 0 for all i ∈ i and x ∈ Λp(s/i).)

4.2. E1-page

Let Ep,q
1 = Hq

(
Ep,•

0 , dp,•0
)

(p, q ≥ 0). As a direct consequence of the conclusions of 
Section 4.1, we see that

Ep,q
1

∼= Hq(i,Homk(Λp(s/i),M)) for all p, q ≥ 0.

Moreover, notice that every element in Hq(i, Homk(Λp(s/i), M)) is an equivalence 
class (modulo im ∂p+q−1) of linear maps f : Λqi ⊗ Λp(s/i) → M such that (4.3) = 0. 
Via the standard linear isomorphism Homk(Λqi ⊗ Λp(s/i), M) ∼= Homk(Λp(s/i),
Homk(Λqi, M)), f corresponds to a linear map F : Λp(s/i) → Homk(Λqi, M). Since 
(4.3) = 0, then ∂q

i
(F (x̃1 ∧ · · · ∧ x̃p)) = 0; and since im ∂p+q−1 corresponds to im ∂q−1

i
via 

this standard isomorphism, we see that F (x̃1∧ · · ·∧ x̃p) is an element in Hq(i, M), for all 
x̃1, . . . , ̃xp ∈ s/i. This shows that Hq(i, Homk(Λp(s/i), M)) ∼= Homk(Λp(s/i), Hq(i, M)), 
and thus

Ep,q
1

∼= Homk(Λp(s/i),Hq(i,M)) for all p, q ≥ 0.

Now, consider Hq(i, M) as a s/i-module (that is, a s-module with trivial i-action) with 
the structure induced from the s-module structure on Homk(Λqi, M) explicitly given by 
(xf)(λ) = x(f(y)) − (−1)|x||f |f(x · y) for all x ∈ s, y ∈ Λqi and f ∈ Homk(Λqi, M). 
Then, denote by ∂•

s/i the differential of the cocomplex Homk(Λ•(s/i), Hq(i, M)). Now 

we consider the map dp,q1 : Ep,q
1 → Ep+1,q

1 defined by dp,q1 (f + im dp,q−1
0 ) = ∂p+qf +
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im dp+1,q−1
0 . Using the explicit formula for ∂p+qf (4.1), the isomorphisms above and 

(4.3), we see that

∂p+qf(x̃0 ∧ · · · ∧ x̃p ⊗ i1 ∧ · · · ∧ iq) (4.4)

=
(
∂p
s/if(x̃0 ∧ · · · ∧ x̃p)

)
(i1 ∧ · · · ∧ iq) + dp+1,q−1

0 f(x̃0 ∧ · · · ∧ x̃p ⊗ i1 ∧ · · · ∧ iq),

for all i1, . . . , iq−1 ∈ i and representatives x̃0, . . . , ̃xp+1 ∈ s of corresponding ele-
ments in s/i. Thus, we can identify dp,q1 with the p-th differential of the cocomplex (
Homk (Λ•(s/i),Hq(i,M)) , ∂•

s/i

)
.

4.3. E2-page and the transgression map

Let Ep,q
2 = Hp

(
E•,q

1 , d•,q1
)

for p, q ≥ 0. As a direct consequence of the conclusions 
from Section 4.2, we see that

Ep,q
2

∼= Hp (s/i,Hq(i,M)) for all p, q ≥ 0.

It is known (see, for instance, [12, Chapter 1, §6.5]) that the spectral sequence thus 
obtained converges to the cohomology of s with coefficients in M ; that is,

Hp (s/i,Hq(i,M)) ⇒ Hp+q(s,M). (4.5)

Now, consider the map dp,q2 : Ep,q
2 → Ep+2,q−1

2 that is explicitly given by dp,q2 (f +
im dp−1,q

1 ) = ∂p+qf + im dp+1,q−1
1 . Using the explicit formula (4.1) for ∂p+qf and (4.2), 

we can choose a representative of f such that

∂p+qf(x̃0 ∧ · · · ∧ x̃p+1 ⊗ i1 ∧ · · · ∧ iq−1) (4.6)

=
∑

0≤j<k≤p+1

(−1)σ(j,k)f(x̃0 ∧ · · · ∧ x̃j−1 ∧ [x̃j , x̃k] ∧ x̃j+1 ∧ · · · ∧ ̂̃xk ∧ · · · ∧ x̃p+1 ⊗ i1 ∧ · · · ∧ iq−1),

where σ(j, k) = k+ |xk|(|xj+1| + · · ·+ |xk−1||), for all representatives x̃0, . . . , ̃xp+1 in s of 
corresponding elements in s/i and i1, . . . , iq−1 ∈ i. (Notice that every other term in (4.1)
will vanish because we can choose a representative f that vanishes if there is anything 
other than p entries in s/i and q entries in i.) Moreover, we see that dp,q2 f 
= 0 only if 
there exist representatives x̃j , ̃xk ∈ s of elements xj , xk ∈ s/i such that [x̃j , ̃xk] ∈ i.

Definition 4.1. The transgression map tM of the spectral sequence (4.5) is defined to be

d0,1
2 : E0,1

2 → E2,0
2 .

In Proposition 4.2 we describe the kernel of this transgression map in two particular 
cases that are important to the proof of Theorem 5.7.
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Proposition 4.2. Let s be a Lie superalgebra and i � s be an ideal.

(a) If s/i is a Lie subalgebra of s, that is, [x̃j , ̃xk] ∈ s \ i for all x̃j , ̃xk ∈ s \ i, then 
d0,1
2 = 0. In particular, if M is a finite-dimensional g-module, s = (g ⊗ A)Γ and 

i = g ⊗ I, I =
∏

γ∈Γ γm, m ∈ MaxSpec(A), then the kernel of the transgression map

tM : Hom(g⊗A/I)Γ
(
(g⊗ I/I2)Γ, evΓ ∗

m M
)
→ H2 ((g⊗A/I)Γ, evΓ ∗

m M
)

is isomorphic to Homg (g,M)⊕ dimA/m m/m2
.

(b) If [s/i, s/i] = i, then d0,1
2 f(x̃0 ∧ x̃1) = 0 for all x̃0, ̃x1, if and only if f = 0. In 

particular, if s = (g ⊗A)Γ and i = g ⊗ I, I =
∏

γ∈Γ(γm)n, m ∈ MaxSpec(A), n > 1, 
then the kernel of the transgression map tM : Hom(g⊗A/I)Γ

(
(g⊗ I/I2)Γ, evΓ ∗

mnM
)
→

H2 ((g⊗A/I)Γ, evΓ ∗
mnM

)
is 0.

Proof. Part (a) follows from (4.6), the facts that (g ⊗ A/I)Γ ∼= g and (g ⊗ I/I2)Γ ∼=
g ⊗ m/m2 ∼= g⊕ dimA/m m/m2 . To prove part (b), notice that, by (4.6), we have

∂1f(x̃0 ∧ x̃1) = (−1)1+|x1||x0|f([x̃0, x̃1])

for all representatives x̃0, ̃x1 in s of corresponding elements in s/i. Since [s/i, s/i] = i, it 
follows that ∂1f(x̃0 ∧ x̃1) = 0 for all x̃0, ̃x1 if and only if f = 0. �
5. Extensions

Throughout this section, we will assume that g is a finite-dimensional simple Lie 
superalgebra, that A is an associative, commutative, finitely-generated algebra with unit, 
that Γ is a finite abelian group acting on g and A by automorphisms, and that the action 
of Γ on MaxSpec(A) is free.

We begin by using Lemma 2.6 to reduce the problem of describing p-extensions be-
tween finite-dimensional irreducible (g ⊗ A)Γ-modules to that of describing the p-th 
cohomology of (g ⊗A)Γ with coefficients in indecomposable modules.

Proposition 5.1. Let π, π′ ∈ P. There exist n, �, q1, . . . , q� ∈ Z>0, maximal ideals 
m1, . . . , m� ⊆ A in distinct Γ-orbits, and, for each i ∈ {1, . . . , �}, j ∈ {1, . . . , qi}, a 
finite-dimensional indecomposable g ⊗A/mn

i -module Mi,j, such that

Homk(V(π),V(π′))⊕2κ(π)+κ(π′) ∼=
⊕

1≤ji≤qi
1≤i≤�

evΓ ∗
mn

1
M1,j1 ⊗ · · · ⊗ evΓ ∗

mn
�
M�,j� and

Extp(g⊗A)Γ(V(π),V(π′))⊕2κ(π)+κ(π′) ∼=
⊕

1≤ji≤qi
1≤i≤�

Hp
(
(g⊗A)Γ, evΓ ∗

mn
1
M1,j1 ⊗ · · · ⊗ evΓ ∗

mn
�
M�,j�

)
, p > 0.



388 L. Calixto, T. Macedo / Journal of Algebra 517 (2019) 365–395
Proof. From Remark 2.3, there exist n, � ∈ Z>0, maximal ideals m1, . . . , m� ⊆ A in 
distinct Γ-orbits, and finite-dimensional irreducible g ⊗ A/mn

i -modules Vi and V ′
i such 

that

V(π) ∼=
⊗̂�

i=1
evΓ ∗

mn
i
Vi and V(π′) ∼=

⊗̂�

i=1
evΓ ∗

mn
i
V ′
i .

Thus, there are isomorphisms of (g ⊗A)Γ-modules

Homk (V(π),V(π′))⊕2κ(π)+κ(π′) ∼= Homk

(
V(π)⊕2κ(π)

,V(π′)⊕2κ(π′)
)

∼=
(

�⊗
i=1

evΓ ∗
mn

i
V ∗
i

)
⊗
(

�⊗
i=1

evΓ ∗
mn

i
V ′
i

)

∼=
�⊗

i=1
evΓ ∗

mn
i

(V ∗
i ⊗ V ′

i ) .

For each i ∈ {1, . . . , �}, since V ∗
i and V ′

i are finite dimensional, there exist qi > 0 and 
indecomposable g ⊗ A/mn

i -modules, Mi,1, . . . , Mi,qi , such that V ∗
i ⊗ V ′

i
∼=

⊕qi
j=1 Mi,j . 

Thus there exist isomorphisms of (g ⊗A)Γ-modules

�⊗
i=1

evΓ ∗
mn

i
(V ∗

i ⊗ V ′
i ) ∼=

�⊗
i=1

⎛⎝ qi⊕
ji=1

evΓ ∗
mn

i
(Mi,ji)

⎞⎠ ∼=
⊕

1≤ji≤qi
1≤i≤�

evΓ ∗
mn

1
M1,j1 ⊗ · · · ⊗ evΓ ∗

mn
�
M�,j� .

This proves the first statement. The second statement follows from the first one and 
Lemma 2.6. �

This next result is a particular case of Proposition 5.1 and will be used to prove 
Corollary 5.6.

Corollary 5.2. Let V and V ′ be finite-dimensional irreducible (g ⊗ A)Γ-modules. If the 
supports of V and V ′ are disjoint, then V ∗⊗̂V ′ is irreducible and, for all p > 0,

Extp(g⊗A)Γ(V, V ′) ∼=
{

Hp((g⊗A)Γ, V ∗⊗̂V ′), if V ∗ ⊗ V ′ is irreducible,
Hp((g⊗A)Γ, V ∗⊗̂V ′)⊕2, otherwise.

Our next goal is to reduce the problem of determining 1-extensions between finite-
dimensional (g ⊗ A)Γ-modules to that of determining homomorphisms and extensions 
between finite-dimensional g ⊗A/mn-modules, where m is a maximal ideal of A and n is 
a positive integer. We start with a general result regarding first cohomology. Recall the 
definition of transgression map (Definition 4.1).
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Lemma 5.3. If M is a finite-dimensional (g ⊗A)Γ-module, then there exists a finite-codi-
mensional Γ-invariant ideal I ⊆ A, such that

H1 ((g⊗A)Γ,M
) ∼= H1 ((g⊗A/I)Γ,M

)
⊕K,

where K is the kernel of the transgression map

tM : Hom(g⊗A/I)Γ
(
(g⊗ I/I2)Γ,M

)
→ H2 ((g⊗A/I)Γ,M

)
.

Proof. Since M is a finite-dimensional (g ⊗A)Γ-module, by Proposition 2.5, there exists a 
Γ-invariant finite-codimensional ideal I ⊆ A such that (g ⊗I)ΓM = 0. By Proposition 2.9, 
there exists a first-quadrant cohomology spectral sequence associated to (g ⊗ A)Γ and 
(g ⊗ I)Γ, namely

Ep,q
2

∼= Hp
(
(g⊗A/I)Γ,Hq

(
(g⊗ I)Γ,M

))
⇒ Hp+q

(
(g⊗A)Γ,M

)
. (5.1)

Since (5.1) is a first-quadrant cohomology spectral sequence, we have an isomorphism of 
vector spaces H1((g ⊗A)Γ, M) ∼= E1,0

∞ ⊕ E0,1
∞ . Moreover,

E1,0
∞ = E1,0

2
∼= H1 ((g⊗A/I)Γ,M

)
and E0,1

∞ = E0,1
3

∼= ker(d0,1
2 : E0,1

2 → E2,0
2 ),

where d0,1
2 is the transgression map tM .

In order to finish the proof, we only need to describe E0,1
2 and E2,0

2 . By (5.1),

E0,1
2

∼= H0 ((g⊗A/I)Γ,H1 ((g⊗ I)Γ,M
))

and E2,0
2

∼= H2((g⊗A/I)Γ,M).

Since (g ⊗ I)Γ acts trivially on M , there is an isomorphism of (g ⊗ A/I)Γ-modules 
H• ((g⊗ I)Γ,M

) ∼= H• ((g⊗ I)Γ, k
)
⊗ M by Lemma 2.7. Moreover, by Lemma 2.11, 

H1 ((g⊗ I)Γ, k
)

is isomorphic to ((g ⊗ I/I2)Γ)∗ as a (g ⊗ A/I)Γ-module. Thus E0,1
2

∼=
Hom(g⊗A/I)Γ

(
(g⊗ I/I2)Γ,M

)
. �

As a consequence of Lemmas 2.6 and 5.3, we obtain the following result.

Corollary 5.4. If V, V ′ are finite-dimensional irreducible (g ⊗ A)Γ-modules, then
Ext1(g⊗A)Γ(V, V ′) is finite dimensional.

Proof. Since V and V ′ are finite-dimensional modules, by Lemma 2.6, Ext1(g⊗A)Γ(V, V ′)
is isomorphic to H1 ((g⊗A)Γ, V ∗ ⊗ V ′). By Lemma 5.3, H1 ((g⊗A)Γ, V ∗ ⊗ V ′) is iso-
morphic to a subspace of

H1 ((g⊗A/I)Γ, V ∗ ⊗ V ′)⊕ Hom(g⊗A/I)Γ
(
(g⊗ I/I2)Γ, V ∗ ⊗ V ′) , (5.2)

where I is a finite-codimensional Γ-invariant ideal of A. Since g, A/I, I/I2, V ∗ ⊗ V ′

are finite dimensional, both terms in (5.2) are finite dimensional. This proves that 
H1 ((g⊗A)Γ, V ∗ ⊗ V ′) is finite dimensional, and finishes the proof. �
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We emphasize the relevance of Corollary 5.4 by contrasting it with a case where Ext1

is not finite dimensional. Namely, let Γ be a group acting by automorphisms on an 
abelian Lie superalgebra a and on an associative commutative algebra with unit B. For 
any finite-dimensional trivial (a ⊗B)Γ-modules M and M ′,

Ext1(a⊗B)Γ(M,M ′) ∼= Homk

(
(a⊗B)Γ,M∗ ⊗M ′)

is finite dimensional if and only if (a ⊗ B)Γ is finite dimensional. In particular, when Γ
is trivial and B is infinite dimensional, Ext1(a⊗B)Γ(M, M ′) is infinite dimensional.

Recall from Corollary 2.12 that H1((g ⊗A)Γ, k) = 0. The next result gives a vanishing 
condition for H1((g ⊗ A)Γ, M) when M is a finite-dimensional (g ⊗ A)Γ-module of the 
form 

⊗�
i=1 evΓ ∗

mni
i
Mi. It also generalizes [20, Theorem 3.6] and [24, Theorem 3.7].

Proposition 5.5. Let �, n1, . . . , n� ∈ Z>0, m1, . . . , m� ⊆ A be maximal ideals in distinct 
Γ-orbits, for each i ∈ {1, . . . , �}, let Mi be a finite-dimensional g ⊗ A/mni

i -module, and 
M =

⊗�
i=1 evΓ ∗

mni
i
Mi.

(a) If Homg⊗A/mni
i

(k, Mi) = 0 for more than one index i, then H1 ((g⊗A)Γ,M
)

= 0.
(b) If Homg⊗A/mni

i
(k, Mi) = 0 for exactly one index i, then

H1 ((g⊗A)Γ,M
) ∼= H1

(
(g⊗A)Γ, evΓ ∗

mni
i
Mi

)
⊗

⊗
j �=i

Hom
g⊗A/m

nj
j

(k,Mj).

(c) If Homg⊗A/mni
i

(k, Mi) 
= 0 for all indices i, then

H1 ((g⊗A)Γ,M
) ∼= �⊕

i=1

⎛⎝H1
(
(g⊗A)Γ, evΓ ∗

mni
i
Mi

)
⊗

⊗
j �=i

Hom
g⊗A/m

nj
j

(k,Mj)

⎞⎠ .

Proof. By Proposition 2.8, we have

H1 ((g⊗A)Γ,M
) ∼= �⊕

i=1

⎛⎝H1
(
(g⊗A)Γ, evΓ ∗

mni
i
Mi

)
⊗
⊗
j �=i

Hom(g⊗A)Γ

(
k, evΓ ∗

m
nj
j

Mj

)⎞⎠ .

Now, notice that Hom(g⊗A)Γ
(
k, evΓ ∗

mnk
k

Mk

)
∼= Homg⊗A/mnk

k
(k,Mk) for all k ∈ {1, . . . , �}. 

This proves part (c). If Homg⊗A/mnk
k

(k, Mk) = 0 for more than one index k, then for 
each i, there exists j 
= i such that Hom

g⊗A/m
nj
j

(k, Mj) = 0. This proves part (a). If 
Homg⊗A/mni

i
(k, Mi) = 0 for exactly one index i, then 

⊗
j �=k Hom

g⊗A/m
nj
j

(k, Mj) = 0 for 
all k 
= i. This proves part (b). �
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The next result generalizes [20, Lemma 3.3] and [24, Proposition 3.6]. It follows di-
rectly from Corollary 5.2 (for p = 1), the classification of finite-dimensional irreducible 
(g ⊗A)Γ-modules (see Section 3) and Proposition 5.5(a), thus we omit its proof.

Corollary 5.6. Let V and V ′ be nontrivial, finite-dimensional, irreducible (g ⊗ A)Γ-
modules. If the supports of V and V ′ are disjoint, then Ext1(g⊗A)Γ(V, V ′) = 0.

Recall that we are assuming that g is a finite-dimensional simple Lie superalgebra, 
A is an associative, commutative, finitely-generated algebra with unit, and Γ is a finite 
abelian group acting on g and A by automorphisms, such that the induced action of 
Γ on MaxSpec(A) is free. Now we state, and prove, the main result of this section. It 
describes 1-extensions between finite-dimensional irreducible (g ⊗A)Γ-modules in terms 
of homomorphisms and extensions between finite-dimensional g ⊗A/mn-modules.

Theorem 5.7. Let π, π′ ∈ P, �, n1, . . . , n� ∈ Z>0, m1, . . . , m� ⊆ A be maximal ideals in 
distinct Γ-orbits, and Vi, V ′

i be finite-dimensional irreducible g ⊗ A/mni
i -modules such 

that V(π) =
⊗̂�

i=1evΓ ∗
mni

i
Vi and V(π′) =

⊗̂�

i=1evΓ ∗
mni

i
V ′
i . For each i ∈ {1, . . . , �}, let di

denote δ1,ni
dimA/mi

mi/m2
i .

(a) If Vi is not isomorphic to V ′
i for two or more indices i, then Ext1(g⊗A)Γ(V(π), V(π′)) =

0.
(b) If Vi is isomorphic to V ′

i for all but one index i, then

Ext1(g⊗A)Γ(V(π),V(π′))⊕2κ(π)+κ(π′) ∼= Ext1
g⊗A/mni

i
(Vi, V

′
i ) ⊕ Homg (g⊗ Vi, V

′
i )

⊕di .

(c) If Vi is isomorphic to V ′
i for all i ∈ {1, . . . , �}, then

Ext1(g⊗A)Γ(V(π),V(π′))⊕2κ(π)+κ(π′) ∼=
�⊕

i=1

(
Ext1

g⊗A/mni
i

(Vi, V
′
i ) ⊕ Homg (g⊗ Vi, V

′
i )⊕di

)
.

Proof. Denote 
(⊗�

i=1 evΓ ∗
mni

i
Vi

)
by V , 

(⊗�
i=1 evΓ ∗

mni
i
V ′
i

)
by V ′, and recall from Section 2.3

that V ∼= V(π)⊕2κ(π) and V ′ ∼= V(π′)⊕2κ(π′) . Thus, by Lemma 2.6, we have

Ext1(g⊗A)Γ(V(π),V(π′))⊕2κ(π)+κ(π′) ∼= H1 ((g⊗A)Γ, V ∗ ⊗ V ′) .
Now, notice that V ∗ ⊗ V ′ ∼=

⊗�
i=1 evΓ ∗

mni
i

(V ∗
i ⊗ V ′

i ), that V ∗
i ⊗ V ′

i are finite dimensional, 
and that

Homg⊗A/mni
i

(k, V ∗
i ⊗ V ′

i ) ∼= Homg⊗A/mni
i

(Vi, V
′
i ) ∼=

{
0, if Vi � V ′

i ,

k, if Vi
∼= V ′

i .
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(a) To prove part (a), notice that, if Vi � V ′
i for two or more indices i, then by Propo-

sition 5.5(a),

Ext1(g⊗A)Γ(V(π),V(π′)) = 0.

(b) If Vi � V ′
i for exactly one index i, then by Proposition 5.5(b) we have

Ext1(g⊗A)Γ(V(π),V(π′))⊕2κ(π)+κ(π′) ∼= H1
(
(g⊗A)Γ, evΓ ∗

mni
i

(V ∗
i ⊗ V ′

i )
)
.

Now, let I =
∏

γ∈Γ(γmi)ni . By Lemma 5.3, we have

Ext1(g⊗A)Γ(V(π),V(π′))⊕2κ(π)+κ(π′) ∼= H1 (g⊗A/mni
i , (V ∗

i ⊗ V ′
i )) ⊕Ki,

where Ki is the kernel of the transgression map

tV ∗
i ⊗Vi : Hom(g⊗A/I)Γ

(
(g⊗ I/I2)Γ, evΓ ∗

mni
i

(V ∗
i ⊗ V ′

i )
)
→ H2

(
(g⊗A/I)Γ, evΓ ∗

mni
i

(V ∗
i ⊗ V ′

i )
)
.

To finish the proof of part (b), notice that, Ki
∼= Homg (g⊗ Vi, V

′
i )

⊕di by Proposi-
tion 4.2.

(c) If Vi
∼= V ′

i for all i ∈ {1, . . . , �}, then by Proposition 5.5(c), we have

Ext1(g⊗A)Γ(V(π),V(π′))⊕2κ(π)+κ(π′) ∼=
�⊕

i=1
H1

(
(g⊗A)Γ, evΓ ∗

mni
i

(V ∗
i ⊗ V ′

i )
)
.

The rest of the proof of part (c) follows from Lemma 5.3 and Proposition 4.2 using, 
for each i ∈ {1, . . . , �}, the same arguments that we used to prove part (b). �

Theorem 5.7 generalizes [23, Theorem 3.7] and [4, Theorem 4.2.1] to the super setting.

Example 5.8 (Evaluation modules). Let V(π) =
⊗̂�

i=1evΓ ∗
mi

V (λi) and V(π′) =⊗̂�

i=1evΓ ∗
mi

V (μi) be irreducible finite-dimensional (g ⊗ A)Γ-modules. In this case, di =
dimA/mi

mi/m2
i and Theorem 5.7 yields:

(i) Ext1(g⊗A)Γ(V(π), V(π′)) = 0, when λi 
= μi for two or more indices i.
(ii) Ext1(g⊗A)Γ(V(π), V(π′))⊕2κ(π)+κ(π′) ∼= Ext1g(V (λi), V (μi)) ⊕ Homg(g ⊗ V (λi), V (μi))⊕di , 

when λi = μi for all but one index i.
(iii) Ext1(g⊗A)Γ(V(π), V(π′))⊕2κ(π)+κ(π′) ∼=

⊕�
i=1 Ext1g(V (λi), V (μi)) ⊕ Homg(g ⊗ V (λi), V (μi))⊕di , 

when λi = μi for all i ∈ {1, . . . , �}.

Thus, V(π) and V(π′) are in the same block if and only if, for each i ∈ {1, . . . , �}, either: 
λi−μi ∈ Q, or V (λi) and V (μi) are in the same block in the category of finite-dimensional 
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g-modules. In particular, if g is of type II, p(n), q(n), S(n), S̃(n) or H(n), since all finite-
dimensional irreducible (g ⊗A)Γ-modules are evaluation modules, this gives a description 
of the block decomposition of the category of finite-dimensional (g ⊗A)Γ-modules.

Moreover, if either λ or μ are typical, then Ext1g(V (λ), V (μ)) = 0 (see [18, Theorem 
1]). Thus, if either λi or μi is typical for each i ∈ {1, . . . , �}, then Ext1(g⊗A)Γ(V(π), V(π′))
depends only on Homg (g⊗ V (λi), V (μi)). In particular, if g is of type B(0, n), since all 
the weights are typical, the blocks of the category of finite-dimensional (g ⊗A)Γ-modules 
are parametrized by the so-called spectral character (compare with [20, Proposition 4.5]
and [24, Theorem 5.19]).

Now, let g be a Lie superalgebra of type A or C (type I), k be the trivial g-module 
and V (λ) be an irreducible finite-dimensional g-module of highest weight λ ∈ h∗. Let 
ρ1 be the half sum of the odd positive roots of g, αmax (resp. αmin) be the maximal 
(resp. minimal) root of g, and μ(j) be as in [31, Theorem 1.1]. For any maximal ideal 
m ∈ MaxSpecA, we have

Ext1(g⊗A)Γ(evΓ ∗
m k, evΓ ∗

m V (λ)) ∼= Ext1g(k, V (λ)) ⊕ Homg (g, V (λ))⊕d
,

where d = dimA/m m/m2. Thus Ext1(g⊗A)Γ(evΓ ∗
m k, evΓ ∗

m V (λ)) 
= 0 if and only if 
Ext1g(k, V (λ)) 
= 0 or Homg (g, V (λ)) 
= 0. From [31, Theorem 1.1], we obtain that:

• in type A, Ext1(g⊗A)Γ(evΓ ∗
m k, evΓ ∗

m V (λ)) 
= 0 if and only if λ ∈ {−αmin, αmax, μ(0), . . . ,
μ(n−1)},

• in type C, Ext1(g⊗A)Γ(evΓ ∗
m k, evΓ ∗

m V (λ)) 
= 0 if and only if λ ∈ {−αmin, 2ρ1, αmax}.

Example 5.9 (Generalized evaluation modules). Suppose g is either of type I or W (n). 
Let n > 1, m ∈ MaxSpec(A), V , V ′ be finite-dimensional irreducible g ⊗A/mn-modules, 
V = evΓ ∗

mnV and V ′ = evΓ ∗
mnV ′. By Theorem 5.7, Ext1(g⊗A)Γ(V, V ′) ∼= Ext1g⊗A/mn(V, V ′), 

as the kernel of the transgression map is zero (or d1 = 0; cf. Proposition 4.2). Therefore, 
V and V ′ are in the same block if and only if Ext1g⊗A/mn(V, V ′) 
= 0.

For instance, let g = sl(1, 2) (type I), A = k[t] and m = 〈t〉 ∈ MaxSpeck[t]. Recall that 
g admits a Z-grading, g = g−1 ⊕ g0 ⊕ g1, where g0 = g0̄

∼= gl2 and g1̄ = g−1 ⊕ g1. Write 
g0 = gss0 ⊕ z, where gss0 = [g0, g0] and z is the 1-dimensional center of g0. Let z ∈ z \ {0}
and θ ∈ (z ⊗ A/m2)∗ be such that θ(z) = θ(z ⊗ t) 
= 0. Consider the 1-dimensional 
(g0 ⊗ A/m2)-module k ⊗ θ, where k is the trivial 1-dimensional (gss0 ⊗ A/m2)-module 
and θ is the 1-dimensional (z ⊗ A/m2)-module whose action is given by θ. Inflate k ⊗ θ

to a (g0 ⊕ g1) ⊗A/m2-module by setting (g1 ⊗A/m2) · (k ⊗ θ) = 0, and consider the Kac 
module:

K(k⊗ θ) := U(g⊗A/m2) ⊗U((g0⊕g1)⊗A/m2) (k⊗ θ).

One can check that K(k ⊗ θ) is an irreducible finite-dimensional (g ⊗A/m2)-module on 
which g ⊗m does not act trivially (see [27] for details on Kac modules). Thus evΓ ∗

m2 K(k ⊗θ)
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is a generalized evaluation (g ⊗ A)Γ-module which is not isomorphic to an evaluation 
module. By Theorem 5.7,

Ext1(g⊗A)Γ(evΓ ∗
m2 k, evΓ ∗

m2 K(k⊗ θ)) ∼= H1 (
g⊗A/m2,K(k⊗ θ)

)
.

Using the LHS spectral sequence

Ep,q
2

∼= Hp
(
g,Hq

(
g⊗ m/m2,K(k⊗ θ)

))
⇒ Hp+q

(
g⊗A/m2,K(k⊗ θ)

)
,

along with the fact that H0(g ⊗ m, K(k ⊗ θ)) = 0 (as K(k ⊗ θ) is irreducible and is not 
an evaluation module), one can check that Ext1(g⊗A)Γ(evΓ ∗

m2 k, evΓ ∗
m2 K(k ⊗ θ)) 
= 0.

It is worth noting however, that irreducible finite-dimensional g ⊗A/mn-modules are 
not well understood in general, as their only known realization is as quotients of Kac 
and Verma modules.
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